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A Geometric Approach to the Singular Filtering 
Problem 

Abstract-We  consider  the  least-squares  filtering  problem for a 
stationary  Gaussian  process  when  the  observation is  not  fully corrupted 
by white  noise,  the  so-called  “singular”  case. An optimal  estimator is 
constructed  consisting of an  integrating  part,  which is, as in the  regular 
case,  computed  from  a  spectral  factorization or an  equivalent  matrix 
problem,  and  a  differentiating part whose  parameters are computed  from 
a  single  matrix  equation.  This  improves on older  results  which  either work 
under  restrictive  assumptions, or describe  the  solution  only as the  result 
of  some  nested  algorithm. 

I. IKTRODUCTION 

T HIS  paper is concerned with stationary  least-squares 
estimation  for  linear  Gaussian  systems in continuous  time, 

with particular  emphasis  on  the  singular  case  (partially  noise-free 
observations). In contrast  to  previous  works in which  either  the 
solution is only sketched  as  the  result of some nested algorithm or 
restrictive  assumptions  are  made,  we  present an explicit  state- 
space  solution  for  the  general  situation. An optimal  estimator will 
be  constructed that consists of an  integrating  part,  which is 
computed  from  a  spectral  factorization or an equivalent  matrix 
problem  (as in the  regular  case),  and  a  differentiating  part  whose 
parameters  are  computed  from  a  single  matrix  equation.  The 
construction  leads to a  unique  result if and only if the  spectral 
density  matrix of the  observed  signal is full rank.  Moreover, in 
the  nonfull  rank  case  the  freedom of design  can  be  described 
precisely. 

The  method that we  use in the  present  paper is based on the 
observation that the  problem of finding  the  optimal  estimator is 
the  same  for  state-space  models  that  represent the same  spectral 
density. We identify  a  number of invariants  shared by all systems 
that  are  related in this  way.  Earlier  results in this  direction  were 
obtained in the  dual  context of optimal  control by Hautus  and 
Silverman in [ 11, which  has  been a  major  source of inspiration  for 
the  present  work. In contrast  to [l] ,  however. we do not use the 
“structure  algorithm” but rather  the  “geometric  approach”  of [2] 
and [3],  which, in this  author’s  view,  leads  to  a  more  transparent 
picture. 

The  singular  filtering  problem  occurs  when all or part of the 
observations  are  modeled  as  being  noise-free. As explained in [4]. 
this will happen, for instance,  when  the  actual  observations  are 
corrupted by colored  noise. It is also  made  plausible in [4] that the 
solution  should  be  to  differentiate  the  observations (or linear 
combinations of these) until white noise  appears,  and  to use a 
standard  Kalman-Bucy  filter  for the estimation of those  state 
variables that have not already  been  obtained in the differentiation 
process.  What  procedure  one  should  follow exactly is suggested in 
[4]  by the  presentation  of  a  few  worked  examples.  Some  explicit 
formulas  are  given in [5 ,  pp. 352-3561,  but these  soon  become 
unwieldy  as  the  differentiation  proceeds  step-by-step. A consider- 
able  part of the  literature  treats  the  problem  under  the  simplifying 
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but (except  for the single-output  case)  restrictive  assumption  that 
the  number  of  differentiation  steps  needed in order to reach white 
noise is the  same  for all outputs  (see,  for  instance,  [6]); or the 
even  stronger  assumption is made.  such as in [7]  and  [8], that 
white noise  is  obtained in all channels  after  one  differentiation 
step. The  author is unaware of any  previous  publication to give a 
completely  explicit  state-space  solution to the  singular  filtering 
problem without imposing  such  restrictive  conditions. 

An outline of the  paper is as follows. In Section I1 we define 
“signal  model  equivalence”  (SME).  This is followed by a  quick 
review of some of the notions from  the  geometric  theory  that will 
be needed,  along with some new material.  Section IV is  devoted to 
the  uncovering of a  number of invariants  under SME; in the 
author’s  opinion,  these  are  crucial  for  a  complete  understanding of 
the singular  filtering  problem.  The  application to filtering is made 
in Section V, and  the  conclusions  are  summarized in the final 
Section VI. 

11. SIGNAL MODEL EQUIVALENCE (SME) 

In this section,  we  mainly  review  some  basic  facts  from  linear 
mean-square  estimation:  see.  for  instance.  [5]  and [9]-[l l]. Let 
y( t )  be a  stationary,  zero-mean,  Gaussian.  FP-valued  process with 
a  rational  spectral  density,  defined on [0, m). Such a  process  can 
always  be  represented in the  form 

2(f )  = Ax(t )  + Bu(t), x(0) =x* (2.1) 

y(r) = cx(r) + ~ u ( t ) .  (2 .2)  

Here,  the  matricesA E j i n x “ ,  B E Pinxn ’ ,  C E P X n ,  a n d D  E 
P x m  can  be  chosen to satisfy  the  following  requirements: 

i) all eigenvalues of A are in the open left half plane; 
ii) the pair ( A ,  B )  is controllable; 
iii)  the  pair (C, A ) is observable; 
iv) the  matrix [B’  D l ] ‘  is full column  rank. 
To  have  a  short  phrase,  systems C (A,  B, C, D) that satisfy  i)- 

iv) will henceforth be called signal models. Further  properties 
satisfied by (2.1)-(2.2)  are that the  process u(t) is Gaussian  white 
noise of  unit  covariance.  and  the  stochastic  vector x, is normally 
distributed with zero mean  and  covariance  matrix Q satisfying  the 
Lyapunov  equation 

QA’+AQ+BB’=O. (2.3) 

Moreover,  the  initial  condition x* and  the white noise input u(t) 
are  uncorrelated. 

The  representation of the  given  process y ( t )  by (2.1)-(2.2) is in 
the sense that the output  process  of  (2.1)-(2.2) is equal a s .  for all 
t to  the  given  process:  this  requires not only that the  matrices A ,  
B,  C, and D are  chosen  correctly, but also that the white noise 
process u(t) is appropriately  selected  (see [ 121). 

Suppose now that we want  to  compute, for  every t 2 0, the 
conditional  expectation of x([) given the observations y(s), 0 < s 
< t .  The  principle of orthogonality  allows us to  formulate  this 
problem in terms of  an integral  equation 

jb K ( t ;  s)R,.(s-~) ds=R,(I--)  V T  E [O,  tl. (2.4) 
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Here, K ( t ;  s) is  the  unknown  integral  kernel,  and Ryy and R,  are 
covariance  functions  given, with Q as in (2.3), by 

R,(t) =H(t)CeAr(QC’ + BD’) + S(t)DD’ 

+ (1  -H(t))(CQ+DB’)eA“C’ (2 .5 )  

where H ( t )  and 6(t)  denote  the  functions  of  Heaviside  and  Dirac, 
respectively,  and 

R,(r) =eA‘(QC’ + BD’) ( r 2 O ) .  (2.6) 

The  equation (2.4) is, of course,  the  starting point of Wiener’s 
filtering theory,  which, by the  way,  was  effectively used  also in 
the “singular”  case  (see [13, p. 661). We will  not work  directly 
on  the  integral  equation (2.4), but we will use it to  draw  one 
important  conclusion,  which  is  that  the  crucial  parameters that 
determine  the  solution  of  the  optimal  filtering  problem  are not the 
system  parameters A, B, C, and D plus the specific white noise 
process u(t) in (2.1),  (2.2), which  are needed  to  represent  the 
signal  process y ( t )  up to  equality  a.s.  for all t ,  but only the 
parameters C, A ,  QC’ + BD’ , and DD ’ . To be certain. the 
conditional  expectation  process a({) will  depend on the  choice of 
u(t) ,  etc.,  however, we are  interested in the estimator, i.e.,  the 
mapping  which  takes  the  observations cy@), 0 < s < t }  to the 
estimate i ( t ) .  For  a  discussion  which  puts  great  emphasis on the 
difference  between  estimates  and  estimators,  see [ 14. pp. 28-29]. 
The fact that  the  optimal  estimator  can be found in terms of 
covariances is a  basic  property  of  Gaussian  random  variables and 
does not depend  on the stationarity  of  the given processes;  this is 
emphasized  in [ 151 and [ 161. 

So there is good  reason  to  call  two  signal  models El  (A, B I ,  C, 
D l )  and C2 (A,  B2, C, D2) “equivalent” if 

QIC{+BlD{=Q2Ci+B2Di (2.7) 

where Q1 and Q2 are  each  determined by the  appropriate 
Lyapunov  equation (2.3), and 

DID{  =D2Di. (2.8) 

This  type of equivalence will be called  “signal  model  equiva- 
lence” (SME). It  corresponds  to  the  “W-transformations” 
introduced by Popov [ 171 for  the  dual  problem of optimal  control. 
The  equivalence  can be characterized  as  follows. 

Proposition 2. I :  Two  signal  models CI (A, B l ,  C, D l )  and C2 
( A ,  B2, C, D2) are  related by SME if and only if there  exists  a 
symmetric  matrix Q such  that 

Proof: Let Qj(i = 1, 2) denote  the  solution  to the Lyapunov 
equation 

QiA‘+AQi+BiBl = O  (2.10) 

and  write Q = QI - Qz. If Cl and S2 are  eqyivalect  under SME, 
then it  is easy  to  veri@ that (2.9) holds with Q = 0. On the other 
hand, if (2.9) holds,  then we  must have Q = Q, because both 
matrices  satisfy (2.10), and  this  equation  has a  unique  solution. 
The  equivalence of C1 and Ez is now immediate  from (2.9). 

The  dualized  version  of  the  matrix  on  the left-hand side of (2.9) 
has been  termed the “dissipation  matrix”  in  optimal  control 
theory [18]. It is well known that if we  extend SME by also 
allowing  change  of  basis in state  space,  then the resulting 
equivalence  is the one  that  relates  two  systems if their  correspond- 
ing spectral  densities  are  equal  (see [19]). 

Our  strategy  for  solving  the  singular  filtering  problem will  be to 
transform  the  given  system  under SME into  a  system  for  which it 
is fairly  obvious  what the optimal  filter will be. This  is basically 
also  the  strategy  which is used in the standard  methods  for  solving 

the regular  problem  (transformation  determined by the  positive 
definite  solution of the Riccati equation.  or by the minimal 
spectral  factor),  although  this is not always  made  explicit. 

III. PRELIMINARIES 

For  a  system C ( A ,  B,  C, 0) with state-space X = W“, input 
space U = 2”’, and  output  space Y = W ,  consider  the  two 
sequences of subspaces that are defined  as  follows: 

P ( C )  =x (3.1) 

vk”(c)={X E XI 3 U E U s.t. Ax+ 

+Bu E Vk@) and Cx+Du=O} (k>O) (3.2) 

To(C) = ( 0 )  (3.3) 

Tk+I(C)=(x E XI 3 w E Tk(C), u E U s.t. A w + B u  

= x  and Cw+ Du=O} (k>O) (3.4) 

(cf. [20], [2], [3], [21]). The  sequence { Vk((c)]  is decreasing  and 
will, after  a finite  number of steps, reach a limit which is denoted 
by V*(C). The  sequence { Tk(C)] is increasing  and  converges to a 
subspace  denoted by T*(C). The  two limit subspaces can  be 
characterized  as  follows  (see [I], [22]). 

Proposition 3 .  I :  For  a  given  system C (A,  B, C, D),  consider 
the  set of all subspaces T of X for  which  there  exists a mapping 
G: Y -. X such that 

( A + G C ) T C  T, Im (B+GD) C T. (3.5) 

This  set  has  a  minimal  element,  which is equal to T*(C). Also, 
consider  the  set of all subspaces V for which  there  exists a 
mapping F :  X -+ U such  that 

( A  + BF) V C V,  V C ker (C+DF) .  (3.6) 

This  set  has  a  maximal  element,  which is equal  to V*(C). 
To  give  another  characterization of the  sequences { Vk((c)] and 

{ Tk(C)}, consider  the  following  definitions  from [23]. For a 
given  system C ( A ,  B, C, D),  write  (for k 2 1 )  

Bk=[A“’B ... AB  B] (3.7) 

D 0 ... 

c, = [ f 1, Dk = [ 7 .D. ::: I]. (3.8) 

CAk-I  CAk-’B ... CB  D 

The  following  proposition is due to Silverman [22, p. 3561. For  a 
quick  proof,  see  also [24]. Note  that (3.10) is dual to (3.9). 

Proposition 3.2: Let  a  system C (A, B ,  C ,  D) be  given,  and let 
k 2 1. We then have 

Vk(C)=  Ccl[Im D,] (3.9) 

Tk (E) = Bk [ ker D,] . (3.10) 

This  characterization can be  used to derive  results  about  member- 
ship  of Vk(C) + T‘(C) in terms  of  certain  rational  equations.  The 
d-dimensional  space of real  rational  vectors will  be denoted by 

Proposition 3.3: Let a  system C (A, B, C, D)  be given,  and let 
G(s) = C(s1 - A)-IB  + D be its  transfer  matrix.  Then,  for 
each k 2 0 and 1 2 0, an  element x E X belongs to Vk(C) + 
T’(C) if and only if 

i d d (s); its  submodule  of  proper  rational  vectors is written 3: (s). 

s ~ + ’ C ( S I - - A ) - ’ X  E s“’G(s)RT(s)+~!+(s). (3 .11)  

Proof: First  assume that k 2 1, I 2 1 .  Expansion  around 
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(3.12) 

But this  is  true if and only if 
C k X  E CkB/[ker D/] + Im  Dk (3.13) 

or in other  words, 
x E Bl[ker Dl] + C i  ' [Im Dk] 

= T'(C) + V"(C). (3.14) 

For l = 0, (3.12)  is  replaced by 

C, E Im 0,: (3.15) 

which is equivalent  to x E Vk(C) as it should  be,  since p ( X )  = 
I O } .  Finally, if k = 0, then  (3.11)  holds  for  all x and  this is also 
exactly what we need,  since p ( C )  = X .  

Corollary 3.4: For  a  system C (A ,  B ,  C, D) with transfer 
matrix G(s), one  has x E Vk(C) + T*(C) if and only if 

sk+lC(sZ-A)- lx  E G ( s ) 8 m ( s ) + R ~ ( s ) .  (3.16) 

Proof: This is an  immediate  consequence of Proposition  3.3. 
Corollary 3.5: For  a  system C (A,  B, C, 0) with transfer 

matrix G(s), one  has x E V*(C) + T'(C) if and only if 

C(sZ-A)- 'x  E s~-IG(s):C(s). (3.17) 

Proofi The  sufficiency of (3.17) is clear  from  Proposition 
3.3.  Now,  suppose first  that x E V*(C). Take F : X  + U such 
that V*(Z) is ( A  + BF)-invariant,  and V*(C) C ker (C + DF).  
For  such F, computation  shows that 

C ( s l - A ) - ' x = C ( s ) F ( s ~ - ( A + B F ) ) - ' x  

E s-'G(s)RT(s). (3.18) 

Next,  let x be  an  element  of T'(C). By Proposition 3.2, there 
exists u /  '= (u;  . . * u,' ) ' E ker DI such that BIu' = x. Define 
u(s) = uIs/-I + . - *  + UI. For  every k E A, the  first I + k 
coefficients in the Laurent  expansion  around infinity of G(s)u(s), 
starting with the  coefficient of SI -  I ,  are  given by the  vector 

[:A, j k ]  [ud] = [:.I. (3.19) 

This  shows  that 
C ( d - A )  -'x=G(s)u(s) E s/-'C(S)R!(S). (3.20) 

The  proof  is  complete,  since  the  set of all x E X satisfying  (3.17) 
is  clearly  a  linear  space. 

A different proof of this  result is outlined in [44] (Theorem 
3.3).  The l = 0 case  is  older (see [45],  [46],  [25]). 

Corollary 3.6: For  a  system C ( A ,  B, C, D) with transfer 
matrix G(s),  one  has x E V*(C) + T*(C) if and only if 

C(sZ-A) -lx E G(s)Rys). (3.21) 

Proof: This is immediate  from  Corollary 3.5. 
We  close  this  section by introducing  some  notation that will be 

needed  below.  The degree P( f) of  an  element f (s) of the rational 
vector  space ad(s) is defined by 

r ( n = m i n  { k  E zls-kf(s) E R;(S)>. (3.22) 

On Rd(s), a  Hermitian  form  (cf.  [26,  ch.  XIV]) is defined by 
d 

(f, g ) = C  f , ( s ) g i ( - S )  ( f ( s ) ,  g(s) E ?jd(s)). (3.23) 
i- I 

For  a  rational  matrix W(s), defme 

W*(s) = W'(  -s). (3.24) 

Note  that  this  implies 

( Wf, g) = v, W*g). (3.25) 

Two  elements f (s) and g(s) of Rd(s) are  said  to  be orthogonal if 
df, g )  = 0. If E is a  subspace  of Rd(s), we write 

E' = {d(s) E Rd(s)l(f, g) = O  V g E E } .  (3.26) 

Using (3.25) and  the  fact  that  the  Hermitian  form  (3.23) is definite 
(i.e., (f, f) = 0 implies f = 0), one easily proves  that  the 
following  holds  for  any  matrix W(s) over the field of rational 
functions: 

(Im W*) =ker W. (3.27) 

Finally, we also  note  that 

*(V, n, = 2 x 0  (3.28) 

for all f (s) E Eld($. 

IV. IDENTIFICATION OF INVARIANTS 

In this  section, we will indicate  some  invariants  under  signal 
model  equivalence.  This  will  help  to  clarify  the  meaning of SME 
in  a  state-space  framework,  and it also provides  information  that 
is useful in  the  filtering  context. It  has  already  been noted in 
Section I1 that  the  spectral  density @(s) = G(s)G '( - s) of  a 
system C ( A ,  B ,  C, D )  with transfer  matrix G(s) is  an  invariant 
under SME. An easy  consequence of this is the  following (see [27, 
Lemma 21). 

Proposition 4. I :  If two  signal  models C1 and C2 are  related by 
SME, then 

G](S)$P'(S)= C 2 ( s ) R m 2 ( ~ )  (4.1) 

where Gi(s) denotes  the  transfer  matrix of Xi, and mi is the 
number  of  inputs of Ci ( i  = 1, 2). 

Coroliary 4.2: If two  signal  models C I  and C2 are related by 
SME, then,  for all k 2 0, 

T*(X]) + Vk(C,) = T*(C,) + V k ( C 2 ) .  (4.2) 

Proof: It  follows  from  Corollary  3.4 that the  subspaces 
P ( C )  + Vk(C) (k 2 0) are  determined  completely by the 
matrices C and A and by the  image of the transfer  matrix  of E. 
Therefore,  the  statement is an  immediate  consequence of Proposi- 
tion 4.1. 

The  following  result is more  powerful. We will use the 
Hermitian  form  that  has  been  introduced  at  the  end of the  previous 
section. 

Theorem 4.3: If two  signal  models CI and E2 are  related by 
SME, then 

where Gi(s) denotes  the  transfer  matrix of E;, and mi is the 
number of inputs  of Ci ( i  = 1, 2). 

Proof: We shall  show  that for  every uI(s) E WTl(s) there 
exists  a u2(s) E R 3 s )  such  that 

The results will then  follow by symmetry. So, take uI(s) E 
Byl(s). Let {GFyl, . , Gryk)  be  an  orthogonal  basis  for  Im 
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G:. (Such  bases  exist by 126, p. 358, p. 3741.) Define 

k 

.Y=Z (!GTYi, Gr~'y3)-'(u1, GTYJY;. (4.5) 
I =  I 

For a l l j  = 1, a * - ,  k ,  one  has 

( u I +  Gry, Gry,) = 
P 

=(uI ,  G7yjj-C ((GTY;, G?yi))-l(ul, GyYJ(G?Yi, GTYJ 
, = I  

= (uI ,  GTYJ - ( U I ,  G ~ Y J  = O .  (4.6) 

Using (3.27), we conclude that 

u1 -GFy E ker G I .  (4.7) 

In other  words, we have 

Glul=GIGTy. (4.8) 

Now,  define u2 by 

P 

u z = G : y = C  ((GTy;, GTyl ) )V ' (~ l ,  G:yJG;Yy,. (4.9) 
;= 1 

Since G I G ?  = G2G:. we  get 

G ~ u ~ = G ~ C * ~ = G I G T ~ = G ~ ~ ~ .  (4.10) 

It remains to prove that u2 is proper.  Note that 

( G ~ Y ; ,  G ~ Y J  = (G,*yi, G p l j  (4.11) 

for all i = 1, -, k ,  so that [see (3.28)] 

~(GTyyi)=~(G;yi) ( i =  1, * .  ., k).  (4.12) 

Using  this. we can  derive an upper  bound  for the degree of each 
term in (4.9) 

*(((G?Y;, G F Y J - ' ~ ~  G:Y;)G;YJ 
= T ( ( u ~ ,  G T ~ ~ ) ) + T ( G : ~ ; ) - ~ T ( G T J J J  

Q T ( 4 )  Q O .  (4.13) 

We see that u2 is a  sum of proper  terms;  consequently, u2 is 
proper  itself. 

Corollary 4.4: If two signal models C, and C2 are related by 
SME, then 

Vk(Cl)  + T'(C1) = Vk(&) + T'(C2) (4.14) 

for all k 3 0 and I 3 0. 
Proofi This is immediate  from  Proposition 3.3. 

Taking 1 = 0 and k large in Corollary 4.4. we see in particular 
that V*(C) is an  invariant  under SME. This has been  proved 
earlier by Hautus  and  Silverman in [I] (Lemma 6.21), who used 
techniques  from  functional  analysis  for  the  proof.  Another 
immediate  consequence of the theorem is the  following. 

Corollary 4.5: Let C, and C2 be related by SME. Then  the 
transfer  matrices  of CI and C2 have  the  same  zero  structure  at 
infinity. 

Proof: It has been  shown in [28] (see  also [2], [29]) that the 
number  of  zeros  at infinity and  their orders  can  be  determined 
completely  from  the  numbers  dim (V*(C) + T'(C)), l 3 0. 
Therefore,  the  statement is clear  from  Corollary 4.4. 

Recall the definition  of the matrix Dk in (3.8). If u k  = ( u i  , 

development  around infinity of u(s) E El:@), then Dkuk gives 
... , u;_ I ) '  gives  the  first k t e r m  in the  Taylor  series 

the  first k terms in the  corresponding  series  for y(s) = G(s)u(s). 
In conjunction with Theorem 4.3. this  observation  yields the 
following. 

Corollary 4.6: If C I  and C2 are  related by SME, then one has 

Im Dk(CI)=Irn  D k ( C 2 )  (4.15) 

for all k 2 1 .  
Remark I: One can consider  a  discrete-time  version  of SME, 

in which  two  signal  models are  called  equivalent if they have  the 
same  spectral  density 

m(z)=G(z)G,( t). (4.16) 

It is known how to formulate  this  equivalence in state  space [14, 
ch. 91. It should be emphasized that Theorem 4.3 and its 
corollaries  are not  true for  the  equivalence induced by (4.16), as 
can be seen  from  simple  examples.  (Proposition 4.1 will  still  hold, 
however. with essentially  the  same  proof.)  The reason is basically 
that  the point at infinity is fixed under  the  transformation s + - s 
but not under z + z - l .  In  the  author's  opinion.  this  makes  the 
continuous-time  singular  filtering  problem  fundamentally  differ- 
ent  from its discrete-time  version: in fact, the vanishing of 
observation  noise  presents  no  essential  difficulties in the discrete- 
time case.  This point of  view,  although recently disputed [30], 
[31]. is  by  no means new (see [32]). 

Remark 2: Also  invariant  under SME are  the  zeros of the 
transfer  matrix on the  imaginary  axis.  This is easily  shown 
because G ' ( - s) is the  Hermitian  adjoint of G(s) for s = iw,  w E 
2 fixed.  When they are  present, purely imaginary  zeros  cause 
serious  difficulties  for  filtering. 

v. CONSTRUCTION OF THE OPTI?.%.IAL FILTER 

In this  section. we shall  describe how to  compute  an  optimal 
filter for  a  system of the  form (2.1),  (2.2) whether  one  has full 
observation  noise  or  not.  The idea is to transform  the  given  signal 
model under SME into a  form  for  which  the optimal estimator 
becomes  easy  to  write  down.  This  form will be that of a model 
having a  stable  left  inverse.  First, we have  to  discuss the concept 
of left invertibility in state-space  terms. A well-known  result  from 
[33] says that the  transfer  matrix of a  system C ( A ,  B, C, D )  is left 
invertible  (as  a  matrix  over  the  field of rational  functions) if and 
only if the matrix [ B' D' ] ' has full column rank and P ( C )  fl 
V*(C) = IO}. To formulate  a  criterion  for the transfer  matrix to 
have  a  stable left inverse. let T,*(C) denote  the  minimal  element in 
the  set of all subspaces T of X for  which  there  exists a mapping 
G:  Y -+ X such that the eigenvalues of A + GC are in the closed 
left half plane. and (3.5) holds.  The  existence  of  such  a  minimal 
element  can be proved  (constructively) by combining  the  argu- 
ments in [3, p. 1141 and [21]. It is clear  from  Proposition 3.1 that 
we always  have T:(C) 3 T*(C). The  following  proposition was 
proved (in dual form) in [34]; see  also [35]. 

Proposition 5.1: The  transfer  matrix of a  system C ( A ,  B ,  C, 
D) has  a left inverse  having all its poles in the closed  left half 
plane if  and only if the  matrix [ B ' D ' ] ' has full column rank and 

T~;(c) n v*(c)= to}. (5 .1)  

We can now formulate  the  basic result that will  be needed. 
Theorem 5.2: Let C (A , B,  C ,  D)  b_e a  signal  model.  Then 

there  exists  a unique model C ( A ,  B, C,  D) whichjs  equivalent  to 
C under SME. and  which  satisfies TL$(E) fl V*(C) = {O}. 

Proof: This is the  dual of [27. Theorem 41 (which  is, in its 
turn.  a  version of Youla's  classical  theorem  on  spectral  factoriza- 
tion [ 111. with a  proof that uses ideas in [18] and is based 
essentially  on  calculations in [34]). 

The  condition TZ fl V* = (0) means that a  vector x E X is 
determined  completely if it is known  modulo T i  and  modulo V*. 
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Therefore. this condition suggests that the optimal estimator 
should consist of an estimation modulo TLf and an estimation 
modulo V*. This is  what  we shall do.  be it that a certain 
redundancy may be present which allows us to  use  subspaces that 
are  even  larger than T,* or V*. but still intersect only at zero.  The 
precise results are given in the next two  theorems. 

Theorem 5.3: Let C ( A ,  B ,  C,  D) be a signal model with state 
space X = $1" and  output  space Y = FP, and let H E A ' x n  be 
such that ker H 3 Vk(C). Then  there  exist  matrices R, E $I"P 

(i = 1, . ., k )  such that 

IRL ... Rll[Ck D,41=[H 01 (5 .2)  

[note the order of the R i  's; C, and Dk are as in (3.8)]. If we define 
a series of processes z, ( t ) ( j  = 1, - * , k )  by 

ZI (t)%,.Y(t) (5.3) 

d 
dt J 

~ , - , ( t ) ~ ~ - z ( t ) + R / + l y ( r )  Q = 1 ,  . - . ,  k-1)  (5.4) 

then none of the processes il (f) has a white noise component, so 
that the differentiation  is  justified  for  each  step,  and  moreover 

HX-(t) = Zk (f) (5 .5)  

a.s. for all t .  
Theorem 5.4: Let C ( A ,  B,  C, D) be a signal model, with state 

space X = i l"  and output space Y = W, and let Tbe a subspace 
of X for which there  exists a mapping G :  Y -+ X such that the 
eigenvalues of A + GC are in the  open left half plane, and (3.5) 
holds. Decompose X = X ,  X2 with X2 = T,  and write the 
differential equations  accordingly 

a,(t)=Allxl(t)+A12-uz(~)+BIu(t) (5.6) 

. ~ ~ ( t ) = A z l x l ( t ) + A 2 2 x i ( t ) + B 2 ~ ( t )  (5.7) 

r ( t ) = C l x l ( r ) + C 2 x ~ ( t ) + D u ( f ) .  (5.8) 

Then  there  exists a mapping GI: Y + X ,  such that 

A,,+G,Cz=O, B,+GID=O (5.9) 

and the eigenvalues of A I I + GI C1 are in the open left half plane. 
Moreover. the equation 

~v( t )=(A l ,+GIC, )w( t ) -Gly ( t ) ,  w(0)=xl(O) (5.10) 

defines a stationary  process w(t) having the property 

XI  ( t )  = w ( t )  (5.11) 

a.s.  for  all r.  
Before  going  into the proofs of the  theorems, let us note how 

these results can  be used to set up an optimal estimator.  First  of 
all, we have to remark  that what is needed in Theorems 5.3 and 
5.4 is a little  more than what is provided by Theorem 5.2. While 
we had stability with respect to  the closed left half plane in 
Theorem 5.2, we require stability with respect to the open left half 
plane in Theorem 5.4. It follows  from the dual version of the 
result of [36] that T,*(C) does not qualify as a subspace T in 
Theorem 5.4 if and  only if the  transfer matrix of C has  one or 
more  zeros  on the imaginary  axis.  Transformation  under SME 
will not help in such a situation,  since these zeros  are invariant 
(see the  remark at the  end of the  previous  section).  The  problem 
that is  encountered  here is not specific for  singular filtering or for 
continuous-time systems,  and a suboptimal solution is suggested 
in [14, p. 2531. We will bypass the issue and  proceed  under  the 
assumption that the given model (3.1). (3.2) does not have zeros 
on the imaginary  axis. 

Under this assumption.  we  can  apply  Theorems  5.3  and 5.4 to 

solve the filtering problem.  First.  one  transforms  the given model 
into one  for which T.:(C) n V*(C) = (03. This  can  be done 
either by a spectral factorization or by solving a certain matrix 
equation (cf. 1271). Now. take k 2 0 and a subspace T c X 
satisfying the conditions of Theorem 5.4 such that T n V k ( C )  = 
{ O } .  It may be necessary to  take T = TZ(C) and k such that 
VL(C) = V*(C), or it may  be possible to let T and/or V k ( C )  be 
larger  than this. Decompose X = X ,  8 X2,  with X 2  = Tand X, 
2 Vk(C).  Let H be the projection along XI onto X2; then x2(t) = 
Hx(t), and  ker H 3 Vk(C) .  From  Theorem 5.3, we get that x2(t)  
can  be  recovered by applying the differentiation  scheme  (5.3)  and 
(5.4). the  parameters  for which are found by solving  the matrix 
equation (5.2). From  Theorem 5.4 it  is seen that x l ( t )  is obtained 
by integration; the parameter GI can be found by the  procedure 
described in 13, p. 881. which comes  down to solving a linear 
matrix equation. So we have constructed an estimator which in 
fact  reproduces  the  state of the  (transformed) model exactly,  up  to 
sets of zero  measure. so that it certainly  qualifies  as a least- 
squares  estimator for this model.  The  first  property is  of course 
not preserved  under SME but the second property is, so that we 
have indeed constructed a least-squares  estimator  for  the original 
model.  The  procedure we have sketched is just intended to give 
the basic idea of the method; it  is not optimized with respect to the 
amount of  computation.  Now. we proceed to  prove  the  two 
theorems. 

Proof of Theorem 5.3: The matrix equation (5.2) is 
solvable if and only if 

ker [CL DL] C ker [ H  01. (5.12) 

This is equivalent  to 

CL'[Irn De] C H (5.13) 

which  is true by assumption (cf. Proposition 3.2). Next. we use 
the definition (3.8) to write out (5.2) explicitly 

k 

R , c A ~ - ~ = H  
i =  I 

(5.14) 

J - 1  
R;CAJ-'-IB+R,D=O ( j =  1 . . '  k) .  (5.15) 

i =  1 

For the processes q ( t )  defined by (5.3).  (5.4) we shall show that 

J 
zI(t) = RiCAi-'x(r)  (5.16) 

,=I 

a.s.  for all c. The  proof of (5.16) is by induction. F o r j  = 1 ,  we 
have from (5.3) 

Zi(t)=RIY(t)=R1(Ck(I)+Du(t))=R,C,u(t) (5.17) 

where the last equality holds because R I D  = 0 [see (5.15)]. Now 
assume that (5.16) holds for s o m e j  < k - 1 .  Then zJ (1 )  does not 
contain a white noise component,  and we can  write 

J 

?j+~(t)=C R,CAJ-'(Ax(t)+Bu(t))+RI+1(C~(t)+Du(t)) 
i =  I 

(5.18) 

according  to  (5.15).  This  proves our claim. We see that. indeed. 
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all  processes z j ( t ) ( j  = 1 ,  . . a ,  k )  do not contain white noise 
components,  and  furthermore the equality (5.5) is immediate  from 
(5.14) and (5.16). 

Proof of Theorem 5.4: Let G: Y + X be a mapping as 
described in the theorem  statement.  When X is decomposed as X 
= XI o X?, G is decomposed as G = [ G ,’ G i  ] ’ . It then 
follows  from (3.5) that GI has the required  properties.  Now.  we 
rewrite (5.6) using (5.9)  and (5.8) 

~ , ( ~ ) = A l l x l ( r ) - G I C 2 x 2 ( ~ ) - G , D u ( t ) = ( A l , + G 1 C , ) x ( r ) + G l y ( t ) .  

(5.19) 

We see that the process x l ( t )  and w(t )  satisfy the same  differential 
equation (in particular, the driving  process  is the same); by 
definition [see (5.10)], they also have the  same initial condition. 
Since the eigenvalues of A I I  + GICI are in the open left half 
plane, the solutions  of (5.10) and  (5.19)  are well-defined 
stationary processes which must be equal a.s.  for  all t .  

Remark I: The so!yability of the matrix equation  (5.2)  under 
the condition ker H 3 Va(C) was proved earlier in [37] for the 
case H = I (so Vk(C) = ( 0 ) ) .  The idea of obtaining information 
about the state  modulo V*(S), irrespective of the behavior or the 
disturbance u(r),  is in fact one  of the earliest results in the 
geometric  approach to linear  systems:  see [38]. where.  however, 
the problem is treated in a deterministic context and no connection 
is made with signal model equivalence or with  left invenibility.  Of 
course. our construction  of  an optimal estimator is intimately 
related to  the  construction of a left inverse.  The version presented 
here  seems to  be new in  that  it uses a differentiating and an 
integrating part in parallel rather than  in series  as in [23] and [39] 
or in a hybrid  form  as in [37]. 

Remark 2: The  equation  (5.2) is equivalent to the  two 
conditions below 

[Rk . * .  RI]Ck=H (5.20) 

Irn Dk c ker [R ,  .. R , ] .  (5.21) 

Therefore,  we  see  from  Corollary 4.6 that the set of solutions of 
(5.2) is invariant under  SME.  This means that a given model 
(2.1)-(2.2) does not have  to be transformed  under SME in order 
to compute  the  differentiating  scheme (5.3)-(5.4). Note that this 
provides a justification  for the method of “differentiating until 
you get white noise”  proposed in [4]. 

In  general,  there is no guarantee that the  parameters which 
determine  the  optimal  estimator  as constructed above  (the 
matrices R 1 ,  - . - ,  R k  of Theorem 5.3, and the matrix GI of 
Theorem 5.4) are  determined uniquely. However,  we do get a 
uniqueness result in an important special case. 

cheoretn 5.5: Let a signal model C be given by i2.1). (2.2) and 
let C be an  equivalent signal model such that T,*(C) fl V*(C) = 
{O}. If the spectral density matrix cP(s) = G(s)G’( --s) has full 
rank.  then: 

i)  if T C X is a subspace for which the conditions of Theorem 
5.4 are satisfied and if k is-a nonnegative intser .  then T n V k ( e )  
= ( 0 )  implies T = T,?((c), Vk(C) = V*(C): 

ii, there is only _one decomposition X = XI o X, with X ,  = 
T,*(C), XI 3 V*(C); 

iii) for any H such  that  ker H 3 V‘(C), the  equation (5.2) has 
only  one  solution;  and 

iv) there is only one matrix GI that satisfies (5.9). where  the 
parameters  are taken with respect  to 2 and  the  decomposition  is as 
in ii). 

Moreover.  the matrix GI in  iv)  will automatically be such that 
the  eigenvalues of A l l  + GICl are in the  closed left half plane 
(open left half plane, if the transfer matrix of C has no zeros  on the 
imaginary axis). 

Proof: First,  we note that the  spectral density matrix  is  full 
rank if and only if the transfer matrix is surjective.  This  follows 
from the fact that the  rank  of cP(iw) (as a matrix over C )  is equal to 

the row  rank of G(iw) (over B). for all w E $1. Moreover, it is 
known that the transfer  matrix  of a system C ( A ,  B,  C ,  D) is right 
invertible if and  only if the matrix [ C Dl is  surjective  and T*(C) 
+ V*(C) = X. This  is, in fact,  just  the dual of  the result from 
[33] mentioned at the beginning of this section: 

Now, let a signal model C be  given and let X be an equivalent 
model as  described in the  theorem  statement. It follows from  the 
argu-ments above (and also  from  Corollary  4.2) that T*(C) + 
V*(C) = T*(C) + V*(C) = X. So if T C X is a subspace 
satisfying the  conditions  of  Theorem 5.4 and k is a nonnegative 
integer such thg  T f l  Vk(C) = {0), then we must have T = 
T*(C) argd Vk(C) =- P ( E )  since it is  always  true  that T 3 T@) 
and P ( C )  3 V*(C). This  proves  i). To prove ii). note that  it 
follows from$e above2rgument that Tf(2 )  = P ( C ) .  Therefore, 
we have T:(C) @ V*(X) = X and  the d_ecomposition of the state 
space  is indeed unique,  with X ,  = V*(C) and X, = T$). The 
claim iv) is basically a standard result in the geometric theory of 
linear  systems:  see [3. p. 1091. use [2. Lemma 1.11, use also [21], 
and  dualize.  The  fact  that  the  eigenvalues of A I + GI Cl , where 
G, is the unique solution of (5.9), are automatically in the closed 
(or open) left  half plane also  follows essentially from [3, p. 1091. 

It remains  to  prove  iii).  One easily sees that the equation (5.2) 
has a unique solution if and only if the matrix [C, D,] is 
surjective. To show that this is the case. we use Theorem 2 in [23] 
which says that the  transfer  matrix G(s) of a system C ( A ,  B, C,  
D) with p outputs is right invertible if and only if 

rank Dl - (E) - rank Di(E) = p (5.22) 

for all sufficiently large 1. We apply this to the system C ( A  ,, B,, 
C,, Dk) which we shall denote by CA-. It is readily checked that for 
all I 2 1 and k 2 I ,  one has 

Dl(&) =&(E). (5.23) 

So if C has a right invertible  transfer  matrix, then. for all 
sufficiently large I, 

= rank (Dkl+k(C))  - rank (D&)) 

k = E  rank (Dkl_,(C))-rank ( D k ~ - , - ~ ( E ) ) = k p  (5.24) 
i =  I 

which shows that Ck is right invertible,  since this system has kp 
outputs. In particular. it follows that [Ck D,] is surjective  for  all 
k 2 1. The  proof  is  complete. 

Remark 3: Suppose now that the  spectral  density of the give! 
model C does not have full- rank.  In the transformed _model X 
one will have T$) n V*(C) = ( 0 )  but T$) + V*(C) # X. 
Consequently.  there will be many ways to decompose -the state 
space X = X ,  Q X ,  where X2 = Tp*(Z) and X, 3 V*(C). Also, 
there will  be many subspaces T larger than T @ )  that satisfy the 
conditions of Theorem 5.4 and that are such that T fl V*(C) = 
{ 01. It may also  be possible to  replace V*(S) by a larger  member 
of the sequence { Vp(E)l k = 0, 1 ,  2, . . . }. In general,  there  is a 
tradeoff ketween differentiation  and integration: taking T larger 
than T.F(C) means  less  differentiation steps. but one has to  make 
sure that T n V k ( s )  = ( 0 ) .  For a fixed decomposition,  the 
nonuniqueness in solving (5.2) is  described by the  standard 
methods of linear  algebra,  whereas the nonuniqueness of  the 
integration gain GI (pole  placement) is described in [3,  pp. 11 1-  
1121. 

Of course.  the  fact that we  get a uniqueness result for  the  case 
of a full rank spectral density matrix is  not entirely  surprising. 
After  all, we have  seen that the spectral density matrix is full rank 
if and  only if the  transfer  matrix  is  right  invertible.  and  this is the 
necessary and sufficient condition  for the left inverse (if it exists) 
to be unique. 
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VI.  CONCLUSIONS 

The  purpose of this  paper  has been to utilize the  geometric 
theory of  linear  systems  for a better  understanding of the singular 
filtering problem. It turns  out that this framework  enables us to 
treat the “singular” and  the “regular” problem much at the  same 
level. The  conclusions  can  be  summarized  as  follows. If the 
spectral density matrix for a given signal is full rank at infinity, 
then we have  the  “regular”  case and the solution takes the form of 
the traditional Kalman-Bucy filter with an integration gain that 
can be determined  after an algebraic Riccati equation  has been 
solved (or, equivalently, a spectral  factorization has been done). If 
the  spectral density is full rank as a rational matrix but has a 
singularity at infinity. then we are in the full rank singular  case 
and the optimal estimator  takes  the  form of a differentiator  and  an 
integrator in parallel. The  differentiation  parameters  are found by 
solving a single  matrix  equation.  whereas  the integration gain  is 
found,  as in the regular  case.  either by doing a spectral 
factorization or by solving a problem stated in terms of constant 
matrices  (see  [27]).  If,  finally,  the  spectral density is not even  full 
rank as a rational matrix (this happens,  for instance, always when 
the  number of outputs in the model (2.1), (2.2) exceeds  the 
number of white noise inputs), then the  same  structure of the 
optimal estimator  is obtained but the uniqueness of the construc- 
tion breaks down. We  are  still, however.  able  to  describe exactly 
what the alternative  forms  for  the optimal estimator  are, and what 
freedom one  has in selecting  the  differentiation  parameters  and  the 
integration gain. 

In this paper.  we  only  discussed  basic  principles, and we have 
not  addressed the issue of efficient  and reliable numerical 
procedures  to  obtain the optimal  estimator.  Also,  we did not 
discuss the relation with the  “nearly  singular” filtering problem 
(see. e.g.. [40] and [41]), although it is expected that the approach 
of this paper will be helpful in this  case  too.  The theory here  can 
be  extended  to estimation of linear  functions of the  state; this 
would bring us even  closer  to  Wiener  filtering,  and it would also 
enable us to  recover  the Bucy filter [42] for problems with full, 
but colored,  observation noise. Finally,  another  connection that 
deserves  further study is  the  one with Wiener-Hopf integral 
equations (cf. [43]). 
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Mean Square Stability  Conditions for Discrete 
- 

Stochastic  Bilinear  Systems 
C. S. KUBRUSLY AND 0. L. V. COSTA 

Abstract-Necessary  and sufficient  conditions for mean  square  stabil- 
ity  are proved for  the  following  class  of nonlinear  dynamical  systems: 
finite-dimensional bilinear models,  evolving in discrete-time, and  driven 
by random  sequences.  The  stochastic  environment under consideration  is 
characterized only  bl independence,  wide  sense  stationarity,  and second- 
order properties.  Thus, we do not  assume  random  sequences to be 
Gaussian,  zero-mean,  or  ergodic. The probability  distributions  involved 
are allowed lo be  arbitrary and  unknown. Limiting stale  moments are 
given in  terms of the model parameters and  disturbances  moments. 

I. INTRODUCTION 

S EVERAL aspects  regarding  structural  properties  of bilinear 
systems have been investigated in the  current  literature  during 

the past decade.  Fundamental  questions on  such a class  of 
nonlinear  dynamical  systems, as well as practical and theoretical 
motivations for  considering  them,  have been properly addressed 
in the  surveys I1]-[3] concerning the continuous-time case. On the 
other hand. many real systems  are naturally described by discrete- 
time bilinear models (e.g..  see [4] and the references  therein). 

The stability problem for  continuous-time  bilinear  systems 
operating in a stochastic  environment  has been considered by 
many authors and  reviewed in [3]. However, the same problem 
for discrete-time systems  has not received so much attention. 
Stability conditions  for  discrete-time  stochastic nonlinear systems, 
including some  particular  cases  of  bilinear  models,  were  pre- 
sented in [SI. A brief account on the  few  papers dealing with the 
stability problem for  discrete-time  bilinear  systems  operating in a 
stochastic environment was given in [6], where sufficient condi- 
tions  for mean square stability were  established. 

In this paper we obtain necessary  and sufficient conditions  for 
mean square stability of  finitedimensional  discrete bilinear 
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systems  driven by random  sequences.  The  paper is organized as 
follows. In Section I1 we  pose  the notation and basic results that 
will be used throughout  the  text.  The model under  consideration is 
described in Section 111, where  the stability problem is formu- 
lated. In Section IV we  consider  some  auxiliaq  propositions  for 
supporting the proofs of the main results. which will appear in 
Section V.  There we present five stability lemmas that combined 
will supply necessary and sufficient conditions  for  mean  square 
stability. as stated in Theorem 1. Our  approach. which applies to a 
general  class  of  discrete-time  bilinear  systems, was motivated by 
the earlier  works  for  particular  classes of continuous-time  systems 
considered in [7] and [8]. 

11. NOTATION AND CONCEPTUAL PRELIMINARIES 

Let ;I and G denote  the real and  complex fields, respectively, 
and C" the n-dimensional complex Euclidean space. Let n Z ( C n ,  
em)  denote the normed  linear  space of all in by n complex 
matrices. For simplicity we  set +X(.@1) = 3 n ( ~ " ,  c n ) ,  {I) will 
stand for the usual inner product in G", and 11 1) will denote  either 
the standard  (Euclidean) norm in G" or the uniform induced norm 
in 'X(S"). We shall use  the  superscripts -, ', and * for complex 
conjugate,  transpose,  and  conjugate  transpose (i.:.. adjoint), 
respectively.  Throughout this paperf: nZ( G " )  + Gn- will denote 
a "stacking operator," which is defined  as follows: for a given H 
= [ h ,  h,,] E L31Z(Cn), withh ,  E G"foreachk = 1, . . - ,  n, 

f ( W = ( h , ,  ..., h"). 

Obviously. f is a topological isomorphism. With the  Kronecker 
product L E K E L3?Z( Gn2) defined as usual for any L ,  K E 
31Z(G"), the following  can be shown [9]. 

Rentark I :  For any L ,  K ,  H E X($"), 

( L  8x1 K ) * = L *  K*, 

f ( L K H )  = (H' 8 L)f(K). 
National Laboratory for Scientific Computation, LNCCICNPq, kio de L 2 0 and > 0 will be  used if a self-adjoint [i.e., L = L* E 
Janeiro, Brazil. and the Department of Electrical Engineering, Catholic 
University-PUC/RJ. Rio de  Janeiro, Brazil. 3 n ( C " ) ]  matrix  is nonnegative (i.e.. (Ly; y )  2 0, v y E G") or 
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