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A nine-fold canonical decomposition for linear systems
H. ALINGYt and J. M. SCHUMACHER]

The zero atrusturs for non-minimal proper svstemes in state-space form is investigated,
The approach is ' geometric ', and a complets charpoterization in geometric terms is
given of the invariant, decoupling, system and transmission geros, 88 defined by
Rosenbrock.  The first main pesult is a forrmula for the transmission zeros,  Second,
a * canondesl * lattics diagram is presented of & decomposition of the state space which
can be wviewed as the * product * of the Kalman sanonical decomposition and the
Morse canonical decomposition,  This decomposition gives a straightforward charae-
torization of all zercs just mentioned in terms of spoctral properties of subspaces
under & coertain elass of feedback and injection mappings.  Via this diagram a number
of equivalent formulas for the transmission zercs are derived. The freedom in pols
pesignment leads to new oharacterizations for the invariant and systern zeros in terms
of greateat common divisors of characteristio pelynomials.  Finally, the relation
is demonstrated between certain subspaces and some structural invarianta, ie. the
zgeros ot infinity and the minimal indices of & polynomianl basis for the kernal of the
tranafer function.

1. Introduction

In the past decade there has been a great deal of interest in the zero strue-
ture of linear multivariable systems. Many definitions have been proposed,
some of which were defined in a state-space context, others in input/output
terms (MacFarlane and Karcanias 1976, Francis and Wonham 1975). Most
of them are covered by the work of Rosenbroek (1970, 1974), who characterized
different kinds of zeros in terms of polynomial system matrices, showed how
they were related and what their interpretations were. His definitions are
now standard. Of central importance were the SBmith form and the Smith-
MeMillan form, notions which were defined for general polynomial and rational
matrices respectively, and which were not only used for definitions, but also
as powerful instruments, At approximately the same time the geometric
approach was introduced, and soon (Moore and Silverman 1974, Hosce 1975,
Anderson 1975) a geometrie interpretation of transmission zeros for strictly
proper minimal systems was available. The key was given by the ° Morse
canonical * decomposition based on the supremal output-nulling controlled
invariant subspace and its dual counterpart. Implicitly, much earlier the
same decomposition had been made by Kronecker in 1880 (see Gantmacher
19549), but its system-theoretic meaning was only made clear by Morse (1873)
and, independently, by Thorp (1973). Related research is concerned with the
pole/zero structure at infinity, Using polynomial system matrices, van der
Weiden and Bosgra (1979, 1080) extended and completed Rosenbrock’s theory
of system zeros.
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Zeros at infinity have also been studied in a different context, ie. system
invertibility, by Silverman (1969). Although the geometric interpretation of
zeros at infinity was already implicit in Morse (1973) (see also Morse (1876)),
this characterization obtains a morve natural interpretation in terms of almost
invariant subspaces (Willems 1981 )}—see Commault and Dion (1882).

In this paper we consider systems of the form

#(t)= Ax(t) + Bu(t) where w(f)e¥ = R™
Y(t)eY = R (1)
yit)=Ca(t) + Duit) x(t)ed = B

Minimality is not assumed. In §2 we give a summary of the definitions of
zeros and the relevant geometric concepts, and we derive a formula for the
transmission zeros.

A lattice diagram, which contains all subspaces relevant to the zero strue-
ture is presented in § 3, as well as five alternative formulae for the transmission
zeros and a block matrix representation. Section 4 containg results on pole
assignment and new formulae for the invariant and system zeros in such terms.
The orders of the zeros at infinity and the minimal indices of a polymomial
basis for the kernel of the transfer function are shown in § 5 to be in one—one
relation to the dimensions of certain subspaces, which completes a characteriza-
tion of all edges in the lattice diagram of § 3.

Notation

Hets and subspaces are denoted by seript symbols. The controllable
subspace is written (4 |#>=F+ AF + ...+ A" '@ where #=Tm B. Dually,
the unobservable subspace is (# |d = nA-1H n.. .nd'"H, where o =
Ker (', For a mapping M, M—'¥" denotes the set {|Mazs¥"}. The spectrum
of a matrix 4 is written o(d). For output-nulling controlled invariant sub-
spates ¥ (see §2) we denote F(¥)={F|(4d+BFy¥ =¥ cKer(C+DF})}
and dually #(¥)={G|(44G0)¥=5>1m (B+6D)}. The characteristic
polynomial of a matrix 4 is denoted X(A4). The restriction of a mapping A4
to an A-inyariant subspace ¥ is written A [¥". @ is the direct sum for linear
subspaces. For a polynomial p(s), deg (p) is its degree. For a subspace ¥,
dim (#7) 15 its dimension, If ¥ and %7 are both invariant for 4, and % =¥,
then the mapping induced by A4 on the quotient space ¥ [# is denoted by
A[(¥|#7). In ease any confusion could arise over which system a subspace ¥°
is defined, ¥ is denoted by #7(X), where ¥ is the relevant system. For nota-
tional convenience 27 is abbreviated as s.

2, Transmission zeros

We shall first summarize the definitions of zeros as introduced by FEosen-
brock (1970, 1994) and discuss some relationships between various kinds of
ZEFOS.

(@) Transmission zeros : The zeros of the numerator polynomials not equal
to zero in the Smith—-MeMillan form of the transfer function G(s)=Cls— A 18 +
I} These zeroz have the fallcm:ing dynamieal interpretation (Desoer and
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Schulman 1974) : Assume that (7(s) has maximal rank for almost any seC,
and for the system (1), z(0)=0, and

(1) m=p: Ifzisa transmission zero of order k, then there exist polynomial
vectors g(s) and m(s) such that the input d_(s)=g(s){s—z) "'+ m(s)
produces an output

0 (Vi>0, o=0 ... k—1)
ms}={

gexp () (Vi=0, o=k; ai)

(2) m=p: If zis a transmission gero of order k, then there exists a linear
eombination £(t) of y({) and its derivatives, such that [{f)=0 (¥i=0,
g=0 ... k—1) for all inputs of the form w (i)=g{t*/c!)exp (2f)+
Y m, 8@)(t), where g is an arbitrary constant vector and where the s,

are functions of y. For a=k, (t} is proportional to exp (zt) for all
t =0 and non-zero for almoest all g.

Roughly speaking, (1) says that some input of *frequency * z is compensated
by an initial condition, which the state has been kicked into by a singular
input at £=0. For the case m=p, (2) says that the same is true for an arbi-
trary input of ‘ frequency ' z where the output is taken to be the output of a
polynomial postcompensator. Note that transmission zercs depend only on
the transfer function,

(b) Imput decoupling zeros : The zeros of the GUD of the minors of order
of [4—2 B] which are not identical to the zero polynomial. They correspond
to uncontrollable modes of the system.

{c) Cuiput decoupling zeres ; Analogous to (b) with (4, B) replaced by
fAT, €7, Output decoupling zeros correspond to unohservable modes,

(d) Inputloutput decoupling zeros: The output decoupling zeros which
dizappear when the input decoupling zeros are eliminated by the procedure of
Rosenbrock (1970, pp. 60-63).

(e} System zeros : Consider the system matrix

g—4 B
P(s)=
5]
and let & be the largest integer such that there is a non-zero minor of order n + &
which is formed by rows and columns of P, in such a way that the first n
rows and columns are included. The system zeros are defined as the zeros
of the GCD of these minors,

{f) Invariant zeros : The zeros of the non-zero polynomials on the diagonal
of the Smith form of P(s).

These definitions can also be applied to a general system matrix

T(z)  Uls)
— Fis) Wia)
Rosenbrock (1973, 1974) showed that {e}={a, b, ¢} —{d} which means that

the set of system zeros iz the union, counting multiplicities, of the set of

el
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transmission zeros and the set of decoupling zeros, and that {f}<{e}, which
means that every invariant zero is a system zero, counting multiplicity.
Earlier (1870, pp. 60-63) he presented a procedure by which a polynomial
gyetem matrix F(s) is reduced to a least-order polynomial system matrix
Fyls) with the same transfer function, in such a way that the minors of P(s)
differ from the corresponding minors of Fy(s} by factors (s—s), where the
s; are decoupling zeros. Therefore, the invariant zeroz of P(s) differ from the
invariant zeros of Pg(s) by a set of deconpling zeros. As the invariant zeros
of the least-order system matrix Fu(s) are the transmission zeros of Py(s)
(or P{s)), it iz clear that the set of transmission zeros is contained in the set of
invariant zeros, or {a} < {f}. These relations are summarized in Fig. 1.

decoupling zaros

transmission Eercs
invariant Zeros

gystem zeros

Figure 1,

The definition of input/output decoupling zeros (i.o.d. zeros) may seem
somewhat asymmetric with respect to the input decoupling zeros (i.d. zeros)
and the output decoupling zeros (0.d. zeros), but the following can be established
{Rosenbrock 1970, p. 53)

j.04. zeros=o( A |({H | A) + (A |9))[cA|H))
i.d. zeros=o(d |T'[{ A |4)) {2)

o.d, zeros =o(d |{.X’"Ed}}

For more eluborate descriptions of these zeros, see van der Weiden and Bosgra
{1979). A general survey has been presented by MacFarlane and Karcanias
(1976).

For strictly proper systems, a formula for the transmission zeros is known
by the paper of Moore and Silverman (1975). Anderson (1975) generalized the
geometric concepts to svstems of the form (1). We shall briefly summarize his
definitions and main results :

(1) A subspare ¥ iz an output-nulling controlled invariant subspace iff
(3F) such that (4 + BFy¥ =¥ cKer (('+ DF). The set of o.n.e.d, subspaces
is non-empty and closed under subspace addition, so that it has a maximal
element ¥7*,

(2) A subspace # is an output-nulling controllability subspace iff
(Vo meR)Au(-), 20 (0)=x, =z(t)==z,, w(-)=0.
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There is & maximal element, which is given by
H*=(A+ BF|¥*nB(Ker D); with FeF(¥'%) (3}
(3) The dual concepts are * input-containing ' subspaces ' :
AENA + G0 =¥ o Im (B4 GD),
and * unobservability * subspaces with minimal element
A E=c ey O-YIm DA+ G  with GeF (") (4)

{(4) The following relations, which reduce to results of Morse (1873) for
D=0, hold
W= " N =L (5)
(5) o4+ BF|®*) and o(d +GO|&[A*) can be assigned arbitrarily by
FeF (¥°%), resp. Ge%(5*) ; while for these F and @, o(4 + BF|¥™*[3#*) and
a(d + GC|A4™*| %) remain fixed.
() The transmission zeros are given by o4 + BF |[¥7*/9%), with FeF (¥ *).
In proving this, Anderson implicitly assumed minimality, as the transmission
zeros were set equal to the invariant zeros. For non-minimal systems pole—
zero cancellations will oceur in the transfer function, so in this case this formula

merely represents the invariant zeros (ef. also van der Weiden and Bosgra
(1879)).

Algorithms for the computation of ¥™* as a limit of subspaces ¥7% are avail-
able (Anderson 1975, Molinari 1976, 1978). These subspaces ¥ are defined
recursively as follows

PU=F, ¥i={el(FueW) Lo+ Bue¥ =), Ox+ Du=10} (6)
For a discrete-time system E, : ¢, = A, + Buy, y,=Cr,+ Duy, this definition
has a natural interpretation
=T, Fi={2|@uy, ..., 4 g=---=th1=0 forz;=x} (7)
That these definitions are equivalent can be proved by indunction as follows.
(i=1) ¥1={x|QueW¥)Adx+ Bue¥ =, Cx+ Du=0}
= x| Fuoe W)y =0+ Dug=0 for z,=x}=#"
(i—i+1) ¥ =fp|(QueW)da+ Buge? ™, Coet Duy=0]
= x| (Quge¥ )ae¥ T =F1, =0 for x,=x}
= {x|(Que¥)Puy, ... ugWth=...=y;=0, y,=0 for x,=a}

as 2 eF tee{Fuy o WY ==Y =1
Ho ¥R — i

Definition (7) was first proposed by Molinari (1976 a), who proved the
equivalence with the definition of Anderson. The dual definitions are

Fr={0}, Fi={x|(@usW¥)BTeF AT+ Bu=2x, CF+Du=0} (8)
"‘?u 5 {ﬂ}! 5?1: . {.I! | l:au'lr:l LT | Hf—l }xﬂ —— ']r xl’ =i, .'l'rl}= paa = yi—I o D} {9]
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Note that definitions (6) and (8) are both independent of state feedback
and output injection. As a special case the same holds for ¥™* and #*. As
a consequence, we may caloulate #7% and %7 just as well for the system which
has been constructed as follows,

It we decompose # =% &%, and ¥ =¥ a¥, with # =KerD and
#¥y=1Im D, then we can write

4 B, B,
A B
[ ]= L 0 {10}
o n

G, 0 Dy

where I, ig invertible. Choosing

0
610 ~ By F=[ ]

.
and selecting suitable bases in %, and %, we obtain the matrix representation
4, B, 0

A+ BF+GO+GDF B+GD
=@, 0o o (11)
¢+ DF D
¢ e i
where dy=4 — By D71 O,

So if we define E=({4, B, C, D) and £=(4,, B,, C,. 1), then ¥ *Z)=
##Z) and F*E)=F*E). In some cases this allows us to use familar
results for the strictly proper case, as will be done in § 5,

After these preliminaries we are in a position to derive a formula for the
transmission zeros in geometric terms. This will be done by caleulating
the transmission zeros for a minimal system with the same transfer function,
which will now be constructed, Asin (1), we have the system E=({4, B, C, D).

Define new systems £=(4, B,C, D) and E=((A, B, €, D) in the following ways

X=¢A|By, i:X—X (natural imbedding)
X=X[i"Y(K|4}), =:X—X (canonical projection)

and the remaining mappings such that the diagram in Fig. 2 commutes.
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Note, that these mappings are well-defined, because Imi={A[#) is
A-invariant, Ker m=i"1((¥ |4)) is A-invariant, Im B<Im{ and Kerrc
Ker (. -

The Morse decompositions of £ and ¥ are related to that of £ in a very
natural way by the following proposition, which is proved in the Appendix.

Proposition 1

Y HE)=mi- 1 *(Z)

FHT)=mi1FHI)

RET) = mi-1H*(Z)

NHE)=mi- LA F(E)
By the results of Anderson (1975), and because the transfer functions of
¥ and ¥ are the same, the transmission zeros of the system X are given by
o( A+ BF|y7#(Z){@*(Z)), with FeF (¥ ™*(Z)). Of course we want a formula in
terms of £. Formula (12) is one of several possibilities, and alternatives will
be given later.

Theorem 1
The transmission zeros of the system E=(4, B, ', D)} are given by
o4 + BF (¥ HZ)N{A |90 [(BHE)+ (A | AN {A|#5))) (12)
for any Fe# (¥ *(Z)) such that F|<{¥ |45 =10.

Proof of Theorem 1
During the course of the proof we shall state and prove various lemmas,
starting with the following.

Lemrna 1
Let F be as in (12). Define F by Fr=Fi. Then Fe (¥ *(Z)).

Proof
Define ¥ =i '%"#(Z) and F=Fi. As (¥ |4)<=Ker F, we have Kern<
Ker F, so F iz well-defined. Because § is monic, we have
(A 4+ BFy¥ =i~Yi(d + BF)¥%)
—iY(d + BF)is (¥ I =i (4 + BF)F*(D)
=i Y HE)) =T,
B0
(A +BFyy*X))=(A+ BFyn ¥ =n(Ad+ BR\F co¥ =¥*(Z).
Further,
(@ + DR (¥ *(Z)) = (C + DFjmi-{¥ *(Z)) = (C + DF)i{¥ (L))
— (C+ DFYi— ¥ #(E)) (O + DF)¥ *(Z)= {0},
so FeF (¥ *(Z)). O
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Define Ay=A + BF, 4,=4+ BF and 4,—= 4+ EF. We shall show that
Ag|(FHEINCA B (RHZ) + (A | A0 A|3)) and Ay *(Z)/H*E) are
similar, using Fig, 3. Here i and i’ are natural imbeddings. + and =’ are canoni-
cal projections. We shall prove that Fig. 3 commutes, and that 7' is an
isomorphism, Thus the theorem will have been proved, as

(B) " MRHE) + (A | AD) =) HANE) + (A [ AN A |35))

by Lemma 2 below.

=
i
]
(]

\
///1

il

X _i-.-}: .;: S 7 . ¥

ST e ol

i g e = = =
le_l.rL“-::quIE:-] =y ———-— K e S 6 O o S 1

P, ¥ "

e B L - =
%/ Iy R k| AR — D ?\ b I S S
. L j/‘" ’,/

“‘-.___‘_-__ b TR
P I

Figure 3,

Lemma 2
Let ¥ =& and i:¥% —Z the natural injection. Then for # =2, the
following hold
1 =%, YW =T ).

We recall the following rules from linear algebra. The first one is a special
cage of Lemma A 1 in the Appendix.

Lemma 3
Let ¢ : &% be a linear mapping, let ¥7, ¥ =&, and ¥ + ¥ =lIm ¢.
Then ¢ ¥ + W)= (¥ )+ 1 #).

Lemma 4

Let ¢ : #—% be monic, ¢t such that ¢*d=1,, and let W =% such that
#'=Tm ¢. Then ¢+ =19,
We shall need the following isomorphism.

Lemmma b | _
(FMEYOLA | T BHE) + (| A A |B) 3 ¥ H(EY R ).
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Proof
(#MEINCA [ ) [ (RHE) + (K| A>n( A |9F))
= (¥ HEINCA B (A | A A ) A (Z)
+ (| A [ @) (o | Ay A |35}
For the numerator we have
(# #(EINCA B (A | AN CA|B) = i1 (P HEN i (H | 4))
= P HEN A | A)) =i H(E) =¥ ()
The denominator is worked out similarly
(BH(E) + (CH | ASNCA|BN((H | AN A|B)
=i~ AHE) + LA | A ) iYL |4))
T HAHE) + (A | D) A | AD)
= (i HAHE)) +i7H [ AD2))
—mi Y #H(Z)) = B*E) ]

. We define the following mappings

T, = (7}, where (%) ig a right inverse of =
T, =(i')twi~i, where (i')* and ¢t are left inverses of ' (resp. i),
To=n', and T=T,T,T,

Then 7' is an isomorphism by Lemma 5 and the following lemma.

Lemma &
T is epic.

Proof
First,
Ty(@) HBHI) + (| 43)
= (@) i i) R E)+ (AT AD)
= (@' rri H(AME) + ({7 A A | E)
= ('t (RHIT)) + (') it (A [ AN |95)
= (") iU RH(E)) 4 (1) i (A [ AN A B = () AHE)
= (i") 4 (5)
so TP (T H#*(E)+ (| Ay)=10}. But then
T, T T = Ty To(THE) + () HIHE) + | A)))
which, as #7', =12 and (I)"Y#*(Z)+ (A |4))=Ker 7, equals
T T =o' (i) i tid
=7 ()P FHEIN A |F) =2 FHE N | #))
= (@AY HE) = (@)Y ME = () HE) = |
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Commutativity is proved as follows. Because i¥=i¥, 7 and i are monic
and the subdiagrams commute, we have i+id,= A;iti. Because also =(i*i7) <
%" and ¢ is monie, we have

A (i) = (P A ) = () miti A
or 4,/ Ty=T,d, By definition, T,4, = 4,"T,.
Now for fef there holds T, A~ A,T,5c(i) (BHE) + (A |4)), since
#1 AfF -7 AT E= A g - AFTE=0
We had already noted that (7)-W#*(Z)+ (| d)=Ker (T,7,). Altogether,

we have for EE{%"
TP AT T AT E=T AT T E=A4,T,T.T,5

Ho TJ{,_—.AD”T and jn and 4," are similar, which completes the proof. [ |

3. Complete characterization in terms of subspaces

In this section we shall combine the Kalman canonical decomposition and
the Morse canonical decomposition into one canonical lattice diagram, which
gives a complete characterization of the zeros mentioned in § 2 in geometric
terms. Inorder to make ¥7* and 5% invariant and to maintain the invariance
of (A|#> and {#|4>, we take FeF(#*) such that (¥ |A><Ker F and,
dually, Ge%(5*) such that Im G=¢{4|#;. This invariance with respect to
A+ BF 4+ GC+ GDF is then verified as follows

(A+ BF+ GO+ GDFWW *={d+ BFp *oy™#
A+ BF+ G0+ GDF)S* (A + GC)SF*

+ (B -+ GD)FFYc 5%
L (13)

(A4 BF+ 60+ GDF)( A | 4> = (4 + 60K K| 4>
= ACH | Ay (a0 |A)

(A4+BF+GC+GDF)A|Hy= ACA|#+ BF{A|®)
+G(C+DF)A| By (A | |

Note that (4 -+ BF+GC+GDF)|[(A|A>=A|(H|4A> so the o.d. zeros are
the spectrum of either of these maps. A similar statement holds for the i.d.
ZETOB.

Because of the invariance (13) all sums, intersections ete. of the subspaces
¥7* gte. are invariant too, so now we can talk about the spectrum on each of the
edges in the lattice diagram of Fig, 4. This lattice diagram contains all in-
formation on the zero structure of the system, as will be explained below.
In the figure, the acronyms oo, ki. and c.i. stand for zeros at infinity, kernel
indices and co-range indices of the transfer function, respectively ; these will
be discussed in § 5. Deconpling zeros which are not invariant zeros have been
given the addition ° sys.’, decoupling zeros which are invariant zeros but not
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T

1.0.d, zeros have been given the addition ‘inv,' TFurther, ' trm.’ stands
for transmission zeros,

We summarize the results so far in the following statement, which gives a
complete geometrie characterization of the zero structure of a proper linear

ayatem.

| Berak LA

i N f<n|Be+<kKin= <n| B>
Vi (<K i ne+<n | By
trm. trm.
V=g | B
Rreck | a> S*+ (=k ] a=n<al B>
od iny..
=K | g R#4 <k | psitan | B 5

<k | axN<h| B>

il
=K | p=nss

Gl GyE.

£a]

Figure 4,
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Theorem 2

Let the system (1) be given. Take any Fe#(¥™*) such that Ker F=
(| A, and Ge#F(F*) such that Im G4 ). Write A=A+ BF 4+ GC+
GDF. The following statements hold with respect to the zeros of the system
(4, B, C, D) (cf. §2):

(@) The transmission zeros are given by
o Ag| (¥ * N A 8))[(R*+(CH [ AP A[H))) (14)
() The input decoupling zeros are given by
ol A | |{ 4| #)
{¢) The output decoupling zeros are given by
a(d,|[<H|45)
(d) The input/output decoupling zeros are given by
o 4| (£ A |y + (A | AD)[<A|F)
{e) The system zeros are given by
ol A | T (A | By )wald, |(A*NA| B F*pe
ol Ay | H | A505%)
{f) The invariant zeros are given by
ol Ay | ¥7*H*)
Praof

The statement under (1) was the content of Theorem 1 ; note that 4 + BF
may be replaced by A, because ¥"*<=Ker (C+ DF). The statements under
(h), (c) and (d) were already given by Rosenbrock (1970). The relation (f)
was proved by Anderson, although he did not state his result as such (see § 2) ;
of. also van der Weiden and Bosgra {1978). Finally, the characterization
{¢) of the system zeros follows from Rosenbrock's result (1973, 1974) that was
phrased in §2 as * {e}={a, b, c}—{d} °. This can be seen by inspection of the
lattice diagram : note that the diagram consists of parts that have the form
shown in Fig. 5, and that one can employ the standard result

ol dg| (¥ + )P ) =al Ay | H (¥ N H))

many times. =

We can read off a number of equivalent formulae for the transmission zeros
ag follows.

Corollary 1
The transmission zeros are given by

o(d+ BF (¥ *N{A|F) (R + (A |4 + (A |583)))
=a(d + BF|(¥ =07 A} + (A|B)(R* + ([ 43))
—ald + BF|(<H | 4>+ (92 A || (B* + (A 7| 47))
=gl A + GO[NFOLA| T + | AD)N(FF 47| A3))
—old + GO N *NA|FNF >+ ((H | AN A |F))
=ald + QO A *NLA | BN ((F*+ A | AN A|3))) (1)
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Proof

This follows from Fig. 4. Note that 4+ BF 4+ GC+GDF reduces to
A+ BF “below ' ¥7°% as ¥ *c Ker (C+ DF), and, dually, to 4 + 6C “above”
¥,

Remark

After all, the equations (15) admit a ' direct ' interpretation. Knowing
that the zeros of the transfer matrix are invariant for output injection and
state feedback, we can find the transmission zeros by applying state feedback
andfor ontput injection such that maximal pole/zero cancellation takes
place, or, equivalently, the MeMillan degree is minimized. The latter
means that the system iz made as unobservable and as uncontrollable as
possible, i.e. that output injection and state feedback are applied to make
#7% and % invariant. By a well-known result in pole placement, these poles
are given by o{d + BF|¥7%/#%) (=old + GC|A4"%|F*)). After deletion of the
decoupling zeros, we obtain (14).

A matrix representation for Fig. 4 is obtained as follows. Let

such that

(A |3 =T,07,07,07,0%, 0,
(A =T,07,8%,
Fr=F DE,BF,
VE=T,07,0%,07,8%,0%,
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Let % =%, ®%, such that %,=8"¥*)nKer D and let & =%, &&, such

that %,=(C.%*)+ Im D. By the invariance of these spaces it is easy to check
that in compatible bases we have

7 o G - S R T
B, 00w My N W W W | ow o
Ay ol Ay Ay e B 0 ke Hp| B
! B AL AR WL W, ] B
o 0 0 0

4 B
= 0 Aﬂﬂ O "434
o D

4
A 4

s ey A ey e A b A A
Ay A A

A

&
=
b=
==
=

R

g e 0 oy

&
B e W

B wAslenlp M Vet AN e A

=
bt
=

g B a8 W 8 B n ®w® S| e 8

[ 0 Oy 0 Oy Oy Oy 0 Gy Oy | 0 Dy

which 15 a refinement of the matrix representation of van der Weiden and
Bosgra (1979), except that now D#0. The decoupling zeros can be identified
ags follows
odsys.=o(d..) odinv.=(4g)
ilod.se(d,y) idinv.=a(dy)

i.deys. =a(d.;)

4, Pole placement

Here we investigate the freedom in pole placement for the class of state
feedback and output injection mappings of the preceding sections, which leads
to alternative characterizations of invariant and system zeros,

Proposifion 2

Consider the set of FeF(¥7*) such that (¥ |A><Ker F. Then o4+
BF + GC+ GDF|#*|(#*n{¥ | A))and o(4 + BF + GC + GDF| 5% 3#*), where
(Fe%(.7*), can be placed arbitrarily and independently by such F.
Proof

E]
Decompose 3'= @& &, with ', =" |43 (=F*n{H | 4), T80T .=
=1

R, X BT BT =F*, T, @T,=CH |45, and 2,87,0%,=F* Ako,
decompose ¥ =%,@%, with %, =B (¥*)nKer D. Take FeF(¥'*) such
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that #°| 4> =Ker F, and take G=#F(5*). Write 4,= A4+ BF + GO+ GDF,
By=B+ 6D, C,=C+ DF. Withrespect to the chosen decompositions we have

-*'i.u '&12 flln A.u *‘-lm d-Bn Bm_
0 Ay dy Ay Ay By By
Ay=10 B Ay v Ag| B=| b6 0

R R R TR o B

e 4 e W 0 0
Co=[0 0 0 C, €] D=[0 D,
Because <d,|B,%,>=®*, it follows that the pair (4., By} is controllable.

Also, because (A,|Im B> =%, the pair (4d,,, B,,) is controllable. If we de-
fine # by F= F+ F', where

0 Fp, 0 0 0
Fr=
S O

we obtain
[dy; A+ By Fy A A+ BFy 4]
0 Au+ B, Fyy, Ay Ay+BuVy, A,
Ay=A+BF+GC+GDF=| 0 0 Ay 0 Ay
0 0 0 Ayu+B,F,, A,
0 0 0 0 A |

Cy=C+DF=[0 0 0 C,4+DF, 0]

From this representation, it is clear that ¥ *=#,@%,®%), is invariant for
A and is contained in Ker ¢, so that Fe(¥™*). Moreover, we have ¢ %" |dye
&, @& ,=Ker F. By the controllability results mentioned above, the eigen-
values of the matrices A, 4+ B, F,, and of A, + B, F,, ean be assigned
arbitrarily and independently. Because

o{Agg+ By Fy,) =ﬂ(ﬁ‘u|§*f[§*ﬁ<flfi>}]
and of 4+ BpFal= a{fi'u|fi"*.l'.f§?"]|, the proof is complete. N
Az usual, the dual case holds also and will not be treated here. I we

broaden the set of ¥ by dropping the requirement that (3| 4> <Ker F.
we can prove the following proposition.
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Proposition 3
Let Ge®(%#%). Then ofd+BF+GO+GDF|#*) and ald+ BF+GC+
G DF|5*/#*) can be placed arbitrarily and independently by Fe#(¥7%).

Proof
The proof is completely analogous to that of Proposition 2, and ean in fact
be obtained from it by merging the subspaces 2, and &y [

We can now characterize invariant and system zeros by the following theorem.

Theorem 3

The set of system zeros equals the set of zeros of G.C.D{X(d + BF+GC+
GDF)| FeF(v'*), Ge@(5*), {H'|A)=Ker F, Im G (Aj#). The set of
invariant zeros equals the set of zeros of G.C.D.{X(A + BF +GC+ GDF)| Fe
F(V°F), GeB(F4)).

Proof

For the first case, note that the spectrum of 4 + BF + GC+ GDF restricted
to (7| Ay, T((A | or ¥7* A+ is independent of F and . Figure 4, together
with Proposition 4 and its dual, then leads to the conclusion. For the second
case, only the restriction to ¥7*/2#* has a fixed spectrum, as is clear from
Proposition 3 and its dual. m

5, Structural invariants

In this section we shall demonstrate the relationships between certain
subspaces and some structural invariants for the combined action of state
feadback, output injection and input-, output- and state space transtormations.
First we shall consider the * zeros at infinity °, using the results of Commault
and Dion (19582) for the strietly proper case.

Theorem 4

For the system (1) define v, =dim (¥7* + S —dim (¥4 LN (i=1, 2, ...).
Let p;= #{j|v; =i} {see Fig. 6). Then the.p; are the orders of the zeros at
infinity of the transfer function of the system, given by Cls— 4)1B+ 1.

Proof
For arbitrary F and (7 we have

Cls— A 1B+ D={I—({C+DF)s—(4+ BF)GHD+(C+ DF)
% (&— (A + BF + GO+ GDF))y B+ GD)}
x {I - Fls—A)*B} (16)

This equation is of the form G(s)= By(s)G, (5] Byls), where B, (s) and B,(s) are
bicausal isomorphisms (i.e. proper rational matrices having a proper inverse
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E F
I:I1 L L L3
o & w &
2
* *
w

Figure 6. If »; equals the number of stars in column ¢, then p; is the number of stars
in row j.

(Hautus and Heymann 1978})), so (7(s) has the same zeros at infinity as 7,(s).
By choosing suitable bases and choosing F and 7 as in (11), we have

4, B, 0 0

= (17)

A+BF+GO+GDF B4+ GD ¢, 0 00
C+DF D

[0 & o o

with B, monic and €', epic. The zeros at infinity of Z=(4, B, C, D) equal
those of £, = (4, By, €, 0). E, has the same ¥"* and %" as the original system,
as was pointed outin § 2. For strictly proper svstems the theorem was proved
by Commault and Dion (1082), and application of this to £, yields the result.

By this theorem the structure of (¥"*+ .5*)}/¥* has been interpreted.
So in Fig. 4 only #*/({H |A>Nn5*) and (¥™*+{A|#>)[A4™* are left to be
investigated. We shall study the former space, leaving the latter to duality.
As is well known, a system is left invertible (or, equivalently, its transfer func-
tion is) if and only if #*= {0} (Morse and Wonham 1971). It is thus expected
that #* is related to the kernel of the transfer function. Roughly speaking
the unobservable part of #* does not contribute to the transfer function, and
we may therefore expect that @#*(({¥|4>n.5%*) is the only space involved.
In the following we shall relate the subspaces ¥ *N.%" to a minimal polynomial
basis for the kernel of the transfer function (Forney 1975). This result will
be generalized to the unobservable case later on.

Theorem &

Let the system £=(A4, B, ', I)) be an ohservable realization of the transfer
matrix G(s). Define y,=dim (¥"*NnS)—dim (¥*NF2) (i=1,2,...). Let
{8y, 8g, ...} be the list of degrees, greater or equal to one. of the polynomials
in 4 minimal polynomial basis for Ker 7, arranged in non-increasing order.
Then the lists {y;, ys, ...} and {&,, §,, ...} are related in the following way :
8;= #{j|v; =1} (cf. again Fig. 6).

To show this, we first need some lemmas where we will assume without
further mentioning that the pair (', 4) is observable.
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Lemma 7
The polynomial u(s) is a solution of G(s)u(s) =0 if and only if there exists a
polynomial x(s), with deg (#) < deg (u), such that

s—A B[z
=0
l: - L‘J l:u{s}]
Proaf

{(*if ) we have x(s) = — (s — A)LBu(s) and — Cw(s) + Du(s) =0, i.e. G(s)uls)=
0.

(* only if ') suppose that G{a)u(s)=0. Define z(s)= — (s— 4)1Bu(s). Note
that the degree of x(s) (ie. the highest power in its development around
infinity having a non-zero coefficient) is at least 1 less than that of «(s). Writ-
ing u(s)=u_js*+...tuy, and w{s)=x_p 1+ . +a;+x5 14 ..., we obtain
the following by expanding the equations x(sj= — (s — A) 1 Bu(s) and — Cx(s) +
Dhifs) =0

e —Bu_, fiy = Iy, =]

T pg=Adr ., —Bu ., Yoprr=—C2 pq+ Du gy =0

xu ..... =4x_1 . _Bﬂ_l 5 y_‘ ...... i Ca‘_l 1 + Du_l ; =u ; -
w,  =Ax, —Buy yg =-—COrg +Duyy =0

E L ¥y =-—0x =10

It follows that C'{s—.4)'x,=0. Because the pair (', 4) is observable, it
follows that 2,=0 and, in fact, 2;=0 for all j=1, so z(s) is a polynomial.

a—4 B[ =z(s)
Moreover, we obviously have =0,

=0 Dl wula) =}

Lemma 8

#y(5) (8] s—4 B
(1) If ey is a polynomial basis for Ker b
(5] i, (&) G B

then {u,(s), ..., u;(s)} is & polynomial basis for Ker (7,
(2) Conversely, if {u,(s), ..., wp(s)} is a polynomial basis for Ker &, then

a,y(s) ] a—d B
A i5 a polynomial basis for Ker , where
(2} iy l8) - D

xyls) = —(s— A1 Bulz) (i=1, ..., k).
(8) Moreover, the lists of degrees of the basis elements are the same.
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Proof
(1) Suppose that (s)u{s)=0. Then

— {5 — A )1 Buls) s—4 B
cKer
wlg) - D
s0 that u(s) can be written as a linear combination of the us) (i=1, ... k).
88— .n.‘i B 'Ei [5}
Suppose that o (s)u (&) + ... +ag(s)us)=0. From =0 it

- D e

follows that z{s)= —(s— 4) 1 Bu,(¢) (i=1, ..., k). Sowe have

¥4(8) rpl(#)
o) + oo 4 g (8) =0 (19)
() wyle)

and consequently o, (8)=... =0 (s)=10.

s—4 B[ xs)
(2) Suppose that =0, Then x{s) iz a polynomial (as
— D] wis)

above) and =z(s)= —{s— A)\1Bu(s), with G{s)uls)=0. Tt follows that

(&) i 8)
can be written as a linear combination of the A R B 5
u(s) y(8)
{(19) holds, then o) (shi(2)+ ... +ap(&)ugls) =0, s0 als) = ... =a(s)=0.
s—A Bl[=xls)
(3) If =0, then x(s)= —(s— 4)1Bu(s); so deg (z)<
= D ufs)
a(a)
deg (u). Therefore deg ( =deg (u{s)).
| uls) ]

Corollary 2

s—4 B
The list of degrees of a minimal polynomial basis for Ker ’: } is
- D

the same as the list of degrees of a minimal polynomial basis for Ker 6/(s).

Corollary 3

The degree-list of a minimal polynomial basis for Ker ((s) is invariant
under changes of basis in &, % and %, and under transformations £—X, =
(d+BF, B,C+ DF, D) and Z—Z%=(4+ G, B+ 6D, ¢, D),
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Proof

s—4 B

The cited transformations correspond to multiplication of [ ]
-C D

from the left and/or right by constant invertible matrices. Cl

Lemma 9

s—A B[ =# £ )]
It =0, with polynomial, then x{s) is #*-valued
—C D || uis) u(s)

(ie. if 2(s) =x_y (' + ... +2g then z_ eR* fori=1, ... k). In fact, we even
have x_,. €Y *NF (i=1, ..., k).

Proaf

Consider eqns. (18) with #,=0. Obviously, we have z,6{z|3u such that
Az + Bue¥™, Cx+ Du=0}=7"* From this, it follows that x_e{x|3u s.t.
Ax+ Buey™®, Ox+ Du=0}=7"* Going on in this way, we find thatax_, ¥ *
for i=1, ...,k On the other hand, we have x_j, ;= — Bu_, and Du_,=0, so
#_pyelBu|Du=0}=5" From this, it follows that T_pasiz|(Quwe ) st
Aw+ Bu=2x, Cio+ Du=0}=% Going on in this way, we find that x_, &
FleF*foralli=1, ... &k Inall, we have

E BV NS =@ fori=1,....k O

Lewnma 10
Take Fed (¥™*). Then #*={4+ BF|S7NY*;

k
(in fact, ¥ (4 +BF}t¢ylnw;=5ﬂ+lnw).

=0
The proof of this is by standard methods (Anderson 1975).

Proof of the Theorem

Decompose # =, O, @, & ¥ where ¥, &¥,@%,=Ker D, ¥,=Ker BN
Ker D, and B#,=5'n¥*c#* Note that B#,N#*={0}]. Decompose
L=, OF, with T, = R* and ¥ =¥,0F, with &, =Tm D. Take FeF(¥*);
then we can write

"All Al! B11 0 Bll 0
A+BF= B=
0 4 0. By B ¥
0 o 0

[0 O 0
C+DF= D=
[0 Oy 0 0 Dy 0
e
where Dy, is invertible, and B,, and By, are monic. Suppose that is
(&)

polynomial and
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Et]
-5—*‘111 =4, By 0 By 0] |xyls)

0 g—As 0 By By 0 | uls)

=1 (20]
] — e 0 0 B 0 [uls)
i —Cgy 0 0 Dy Of |ugls)
| w5 |

Then z,(s) =0 according to Lemma 8. From Dgu.(s) =0, it follows that w,{s)=
0. Also, from Bius(s)=0 it follows that u,s)=0. We are left with the

equation
y(s)
ls=4y Byl =0 (21)

(8]

where (d,;, By,) is a controllable pair. We may assume that this pair is in the
Brunovsky canonical form (see, for instance, Wonham (197%), p. 118). Then
(21) breaks down into a number (equal to rank B,,) of equations of the
form

& =1 07 =.0s)
S W | PN (22)
s 1] wis)

which can be rewritten as

(s} =sx (%) {23)

wia)=axr,(5)

Obviously, a solution of minimal degree is obtained by setting a,(s)=1. which

gives xyf8) =4, ..., xp(s) =51, and u(s)= —s%. The minimal degree iz equal to

&, the size of the corresponding Brunovsky block. The degree of these solutions

are greater or equal to one, whereas the degree of the minimal solution of {22)

iz obviously zero. Therefore, the list of degrees greater or equal to one
s—A B

in & minimal polynomial basis for Ker {or Ker 7(s)) is equal to the
- D

list of controllability indices of the pair (4,,, B,,). On the other hand, it is
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well known (see, for example, Wonham (1979), pp. 119-120) that the control-
=1
lability indices relate to dim ¥ 4,,°Im By =dim (¥ *n5) (I=1,2, ..} in

=i
the way indicated in the statement of the theorem. L

By reduction to the minimal ¢ase we are now able to prove the following
theorem.

Theorem 6
Let £ and X be defined as in § 2. Define the indices 3;(j=1, 2, ...) by

Y=oy — 0y (24)
ay=dim ((A7| 4>+ (FHENFLIE))) 295

Let {8,, 8,, ...} be the list of degrees of the non-constant polynomials in a mini-
mal polynomial basis for Ker {2), arranged in non-increasing order. Then the
lists {3, 34, ---} and {8, 8, ...} are related in the following way

8,=#iily2t) =12, .. (26)

Proaf
By Theorem 5, all we have to show is that o; and &; differ by a constant
integer (¥j), where

5,=dim (¥ *(E)NFi(T) (27)

The following simple facts from linear algebra will be needed. If T': -7,
is a linear mapping between (finite-dimensional) vector spaces, and if ¥ is a
subspace of &, and ¥ a subspace of &, then

dim (T¥#")=dim (¥")—dim (Ker T'"y¥") (28)
dim (T-2%") = dim (Ker T)+dim (Im Tn#") (20)
Using this, together with the results of the Appendix, we can write

&;=dim {mi-}(¥HZ)NFI(Z))}
=dim fi-(# #(ENFHEN}—dim {1 HE)NSHENNHH|AD)
—dim [¥HEINFHEINCA | B} - dim {i1{FHEINFHEINA | A3)}
=dim {(# #E)NSFHEN(FHENLHENK A [}
=dim {((¥ *(Z)NFIT)) + [ 4>)(H°| 45}
=a;—dim {{A7| 45} (30)
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Remark

It is easily seen that G(s)u,=0, for ue®, if and only if Bu,e{#’| 4> and
Duy=0. Therefore, the number of independent constant solutions to the
equation G{s)u(s)=0 (=the number of zero-degree polynomials in a minimal
polynomial bagis for Ker 7) is equal to

B
dim (| A5NFHE)) +dim (Ker { ])
n
In particular, it follows that if £=(4, B, ¢, D) is an observable realization of

B B
(#(2), then dim (Ke.r [DJ)=d_im (Ker[ :I) +dim ({ X | 45N FYE)). This,
b

together with the dual statements, gives a eriterion for a state-space system

B
to have a corresponding minimal system which iz standard (i.e. [ ] is
D

monic and [ D] is epiu).

Finally, some remarks on invertibility of transfer functions can be made.
One of the results of Dion and Commault (1982) is that G(s) has a polynomial
inverse if and only if #*=2" and ¥"#*={0}. This statement holds only for
minimal systems. The general statement is contained in the following
proposition,

Proposition 4
Let the system Z=(4, B, 0, D) have transfer function G(s). Then G(s) is

B

left invertible iff 2% = {0} and is monic
i)

right invertible iff 4™*=% and [C D] is epic

B
invertible iff #*@¥ *=4, [(' D] is epicand I: ] 18 monie
D

Furthermore, these (left, right) inverses can be chosen polynomial iff addi-
tionally the conditions ¥ *N{A |8 = (|45, (A|8B)= 5%+ (H°|4) or both
of these conditions, respectively, are satisfied. Also. G{s) has a proper

i
right inverse iff ¥ *=% and [(' D] is epic
B

B
left inverse iff 7%= {0} and { ] is monie

inverse iff *={0), ¥'*=4%, [ J is monic and [ D] is epic

D
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Proof
The condition for left invertibility has been mentioned already ; the
condition for right invertibility follows by duality, and invertibility holds if
and only if both of these conditions are satisfied. Using the Smith-MceMillan
form it is easily seen that the inverses may be chosen polynomial if and only
if there are no transmission zeros, which is equivalent to (Fig. 4): ¥™*n
{A|F =R+ (N |4), or F*H{H Ay A *N(A|#>. For left invertibility
8% = {0}, s0 in this case the first condition comes down to ¥ *n{Ad |8 = {47 |4,
Right invertibility requires 4"*=%, and the second condition becomes :
{Ad|#>=F*+ (¥ |4d). For the last part, note that G(s) can be written
Gyls) 0
Y#) = B8} {5) Byls) with B(¢) and By(s) bicausal, and &(s)= .
[t} 1]
where (f;(s)=diag {e=r, ..., 87m, L, ..., 1}, Then & iz the number of zeros at
infinity, and the p; are their orders. As lim B,(s) is invertible {(i=1, 2},
|l
we seg that a necessary and sufficient condition for the existence of a
(left/right) proper inverse is that a (left/right) inverse exists and there are
no zeros at infinity, ie. *=#* (or 4" *=¥"*), For left invertibility this

B

becomes F* = {0}, [ ] monic ; and for richt invertibility ¥ *=%, [(" D]
b

epic.

6. Conclusions

The different kinds of zeros as defined by Rosenbrock have a very natural
geometrie interpretation. Together with a number of structural invariants
they can be represented in one canonical lattice diagram. This diagram
can be viewed as the product of the Morse decomposition and the Kalman
decomposition, As for future research, the question as to whether a similar
geometrie interpretation can be obtained for non-proper rational matrices
and generalized state-space systems would be of interest,
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Appendix
Relations between the geomelric structurs of o given system and of the corresponding
minimal system

In this appendix we shall use definitions (6) and (8) and show how they are
related to their analogue for ¥ in the situation of Fig. 3. Fortunately, this
relation is as close as one might hope.

Proposition A 1
YIHE)=mi-Y(¥HE)), forall j=0,1,2, ....
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FPraof

By induction. For j=0, we have ¥ %X) =% and wi- YT ) =nF =7 =¥ (Z).
because = is epic.

Let us now suppose that ¥ /() =mi—1(¥ (X)) for some defined J, and let

us prove the same fact for j+ 1. We first show that #i—}{##1(Z)) = ¥ (X)),
Take =& such that ize¥ " +1(Z) ; we have to prove that z7=¥ 7 4X). Because
tze¥ (X)), there exists ue¥ such that

Aiz 4 Bue¥H(E), Ciz+ Du=0 (A1)

Using the commutativity of Fig. 2, from (A 1) we get i( A%+ Bu)e¥ (),
from which it follows, that

AnZ+ Bu=n( AT+ Bu)eri-Y¥ (X)) = ¥ I(E) (A 2)

Also, we have from (A 1)
Ok + D=0 (A 3)

From (A 2) and (A 3) it follows that, indeed, mFe¥ 1+1(Z).

Now, we show that ¥~ i‘+1{.§}=:wri- ¥ HUEY), Take Fe¥ H14Z). Because
m is epic, there exists ¥e¥ such that =F=% We would like to prove that
iBe¥ IHE), Rince Fe¥I+1(T), there exists u such that A%+ Busy” i(%) and
OF+ Du=0. Because 1‘”1{2} wi Y ¥HEY), there exists weF with  {ireY(X),
such that AZ+ Bu =i Using commutativity, we have mw= A%+ Bu=
w(AZ+ Bu), from which it follows that 47+ Bu= w4+, with @weKer .
Consequently, we get AiZ+ Bu=i(A7+ Bu)=iw+iw, We know that
HWe¥9(E) ;  moreover, WeKer m=i"Y(A|43), so fwelH |4 <= ¥HE) for
all §. Bo

AiF + Busy™i(E) (A 4)

Furthermore
CiZ+ Du=Cnz+ Du=Cr+ Du=0 (A 5)
It follows from (A 4) and (A 5) that iF=¥ 1+1(X), as desired, ]

Proposition A 2
FHEY=mi Y FHE)) for all j=0, 1,2, ...

Proaf
By induction. For j=0, we have %%X)={0} and i ol ==i{{0})=
{0} =X}, because i is monic. Let us now suppose that SHE)=mi Y 5F(E))
for some fixed j, and let us prove the same fact for j+1. We first show that
FIEUE S mi- Y FHYE)). Take Fe#i+1(Z). Then there exist vectors WeFHE)
and ws% such that A7+ Bu=7 and %+ Du=0. Because weFNE) =
mi- FIE)), there existe wed such that =w=F and iweFIE). Define ¥
by ¥=Aw+ Bu. Then we have sf=wdw+nBu— Ao+ Bu=A@+ Bu=%.
So #E=F, and it remains to prove that {7=4(X). Thiz follows from iF=
iAW +iBu=Aiw+ By (note that iweFHE)), and Ciw+ Du=Cmiv+ Du=

(i + Du=0). Next, we prove that mi-WFHYE)) < FHYT), Let Fed
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be such that ie##1(E). We want to show that mFeFIT). Because
iFe 1T, there exist vectors weS¥(Z) and ue¥ such that

fr=Aw4 By, Cw+ Du=0 (A &)
Because Fi(E)=¢ A |#;=Tm i for all j, there exists wed such that fw=uw.
Then we have, from _{A 6), it=Adiw+ Bu=id W+ iBu. Because i is monie,
it follows that =A@+ Bu, so that =F=mdw+7Bu=Anrw+ Bu, where
aidemi-Y SFHE)) = FHZ).
Moreover
Ot + D = O + D = Che + Du =0,

This shows that mre511(Z), and so the proof is complete. O

To proceed, we need the following lemma, which is easily proved by the
standard methods of linear algebra.

Lemma A1
Let @, and Z; be vector spaces, and let T : &, —%, be a linear mapping.
Suppose that ¥" and %" are subspaces of ;.
Then we have
T +# ) =Ty +TH (A T)
We also bave
T W )y=T¥Y "\TH (A 8)
if and only if the distributive rule (¥ M%) + KerT = (¥ +Ker T)n(# + Ker T')
holds. Now suppose that ¥ and %~ are subspaces of &, Then we have
T AH) =T nTH (A 9)
We aleo have
T + W)= T + TH (A 10)
if and only if the distributive rule (¥ + % )nIm T=(¥"Nlm T)+ (¥ lm T
holds.

Proposition A 3
Forall k=0, 1,2, ... and I=0, 1, 2, ..., the following is true

¥R I ST ) =m ¥ HE)NFYE)) (A 11)

Proof
Because Ker w=i-1({#"| A7) is contained in Y ¥ H(E)) for all k, we can
write down
YRE)NFHT) = mi U (FHE N FUE))
=w{i"'{V":{E}}ﬁi—i{éﬂ{zﬂj = mi P HEINFUZY) =1

In a completely analogous way one proves the following proposition.
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Proposition A 4
Forall k=0,1, 2, ... and I=0, 1, 2, ..., the following is true

¥ E(E) 4+ PUD) = mi- Y F H(E) + FUE)) (A 12)

By letting the indices in Propositions (A 1)-(A 4) be large enough (for
instance, equal to dim (%)), we get the following special cases

PHE)=miHF*Z)) )
FHEy=mi-YFHZ))

" (A 13)
¥ Z)=mi~H X))

A HE) =Y A*(Z)) |
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