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• The optimal cost in the regular stationary linear-quadratic 
optimal control problem is given by the maximal solution of an 
algebraic Riccati equation. This solution minimizes the rank of 
a certain matrix, which we call the dissipation matrix. The rank 
minimization problem is also meaningful in the singular case. 
Does it provide the optimal cost for the singular control 
problem? This question was posed by J.C. Willems in 1971. 
The answer is: yes. 
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1. Introduction 

As is very well known, the solution of the 
linear-quadratic time-invariant optimal control 
problem on an infinite time interval can be ob- 
tained through the algebraic Riccati equation, in 
case the problem is regular, i.e. every nonzero 
control action gives rise to a nonzero cost. This 
paper addresses the question of what talces the 
place of the ARE in the singular case. In this, we 
follow a suggestion of J.C. Willems in [1]. 

To describe the issue more precisely, let us first 
introduce some notation. We consider the 
finite-dimensional time-invariant linear system 
over R 

± ( t ) = A x ( t ) + B u ( t ) ,  x(0) = x0, 
y(  t) = Cx( t )  + Du(t) ,  (1.1) 
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with control function u and instantaneous cost func- 
tion y. The associated cost functional is 

J ( x  o, u) = fff l ly( t ) l l  2dt. (1.2) 

Throughout the paper, we shall consider this sys- 
tem under the following standing assumptions: the 
mapping (no) is injective, the mapping (C D) is 
surjective, the pair (A, B) is stabilizable, and the 
pair (C, A) is detectable. 

Following [1], we shall say that a real symmetric 
matrix K satisfies the dissipation inequality if the 
inequality 

x'~gx, - x~gx  o + fti'ily( t )ll2dt >1 0 (1.3) 

holds along a trajectories of (1.1), i.e. (1.3) must 
hold whenever there exists a pair of functions 
(x(.) ,  y(.))  on [to, tl] such that X(to) -- x 0, x ( q )  = 
x l, and such that (1.1) holds for some control 
function u(.). This inequality is an obvious neces- 
sary condition for the form x'oKx o to represent the 
optimal cost 

i n f J (x  0, u) 
/4 

under any conditions related to the long-term be- 
havior of the system (1.1). The equivalent differen- 
tial form of (1.3) is obtained as 

( + Su)'Kx + x 'r (  Ax + Bu) 

+ (Cx + Du) ' (Cx + Du) >1 0 (1.4) 

and this should hold for all x, u. A more concise 
form is 

, , d ' A ' K + K A  + C'C 
x u 

1~ " BK + D'C 

~ X ,  U. 

So if we define 

F ( K I = ( A ' K +  KA + C ' C  
B 'K + D'C 

K B + C ' D I ( x ) > _ .  0 
D'D ]~ u 

(1.5) 

rB + c ' n /  (1.6) 
D'D ]' 
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then the condition for K to satisfy the dissipation 
inequality is simply that F(K)  should be nonnega- 
tive definite. We shall call F(K)  the dissipation 
matrix. 

It was noted in [1] (Remark 10) that the solu- 
tions of the algebraic Riccati equation 

A'K + KA + C'C 

- (KS  + C ' D ) ( D ' D ) - ' ( s ' r +  D'C) -- 0 (1.7) 

are 'boundary '  solutions of the linear matrix in- 
equality F(K)>1 0 in the sense that they make 
F ( K )  of minimal rank. Willems asked whether the 
solutions of the linear matrix inequality which 
minimize the rank of F(K)  are related to the 
solutions of the singular optimal control problem. 
We shall present here a partial and affirmative 
answer to this question. 

In the next section, we shall show that a lower 
bound for the rank of F(K)  is given by the rank 
(over the field of rational functions) of the transfer 
matrix of (1.1): 

W(s)  = C ( s I -  A ) - ' B  + D. (1.8) 

This lower bound is attained if and only if a 
transformed system, which is determined by the 
matrix K and which is defined only if F ( K  ) >/0, is 
right invertible. To show that there exists a matrix 
K such that rank F ( K )  -- rank W, we concentrate, 
in Section 3, on the matrix K ÷ associated with the 
optimal cost under the endpoint condition x(oo) -- 
0. The transformed system defined by K ÷ has zero 
optimal cost, and it follows from results obtained 
via regularization that this system must then be 
right invertible. So we can conclude that the 
minimal rank of F(K)  is equal to rank IV, and 
that one solution to the rank minimization prob- 
lem is given by the matrix K ÷ . As in the regular 
case, this matrix is maximal among the symmetric 
matrices that satisfy the dissipation inequality. So 
it turns out that the rank minimization problem 
for the dissipation matrix is the proper general 
formulation which reduces to the algebraic Riccati 
equation in the regular case. 

2. A lower bound for the rank of the dissipation 
matrix 

Obviously, the mapping a ~ fi defined by 

fi(s)  = a ( - s )  (2.1) 

is an automorphism of order 2 (i.e. a mapping 
whose square is the identity) on the field of real 
rational functions R(s). For x, y ~ Rk(s), we de- 
fine the form 

k 

( x , y )  = E xj~j. (2.2) 
j - I  

It is easily verified that this is a sesquilinear form 
on the rational vector space R k(s) with respect to 
the automorphism given by (2.1) (see [2], [3] Ch. 
XIV). (This means that the form is linear in the 
first variable but antilinear in the second,, i.e. 
(x,  ay )  = ~(x, y>.) Moreover, the form turns out 
to be definite. 

Lemma 1 . / f  (x,  x )  = O, for x ~ Rk(s), then x = O~ 

Proof. By inserting s = ito (to ~ R), we find 

k k 

Z Ixj(ito)l 2 =  Z xj( i to ' )x j ( - i to)= 0. (2.3) 
j ~ l  j = l  

So the rational functions xj(s)  must all be zero on 
the imaginary axis; but then they must be zero 
everywhere. 

Now consider two rational vector spaces Rm(s) 
and R P(s) with associated forms (2.2), Let W be a 
linear mapping from Rm(s) to RP(s). By the 
definiteness of the forms, we can uniquely define a 
mapping 

W* : R ' ( s ) - ~  r im(s) 

by requiring 

(x, Wy> = (W,x,  y> Vx a , ( s ) ,y  a"(s). 
(2.4) 

In fact, it is not hard to see that 14" is given by 

W*(s)  = W ' ( - s ) .  (2.5) 

The following lemma will be needed. 

Lemma 2. For any linear mapping W: R P(s) --* 
R"(s ) ,  we have the following equality between sub- 
spaces of R V(s): 

ker W =  ker W*W. (2.6) 

Proof. Suppo.se that W*Wx = O. Then, in particu- 
lar, (W*Wx, x)  -- 0 which implies (Wx, Wx ) = O, 
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so that Wx = 0, according to Lemma 1. The con- 
verse is trivial, of  course. 

We now turn to the dissipation matrix. For  any 
K such that F (K)>~0 ,  we can find matrices Cr  
and D r of  full row rank such that 

(Cr  D r ) ' ( C r  D r ) = F ( K ) .  (2.7) 

Note  that the number  of  rows of  (C r D r )  is equal 
to the rank of  F(K). We write 

W,~ ( s )  = Cr ( sZ  - A ) - ' B  + D r . (2.8) 

The following lemma contains the key observation 
of  this paper. 

Lemma 3. Let the system (1.I) be given, and sup- 
pose that K is a symmetric matrix such that I:( K ) >1 
O. Then 

rank F ( K )  >1 rank W (2.9) 

with equality if and only if  W r is right invertible. 

Proof.  Write rank F ( K )  = r. Not ing  that W r is an 
r × m-matrix, we see that 

rank F ( K )  >1 rank W r (2.10) 

with equality if and only if W r is right invertible. 
So it is sufficient to prove that rank W r = rank W. 
By direct computat ion,  one verifies that W~W r = 
W*W. It then follows from Lemma 2 that ker W 
= ker W r .  But 

rank W -  codim ker W 

= codim ker W r =  rank W r ,  

so that the proof  is done. 

We have shown that the rank of the transfer 
matrix is a lower bound  for the rank of  the dis- 
sipation matrix, but  it remains to be proven that 
this lower bound can actually be achieved. This 
will be taken up in the next section. 

3. Right invertibility and zero optimal cost 

Consider  the system (1.1) with cost functional 
(1.2). The optimal cost under the endpoint  condi- 
tion 

lim x(  t ) = 0 
I ~ o O  

depends quadratically on the initial value x 0, so 
(following [1]) we can define a symmetric  matrix 
K ÷ by 

• xoK' + x 0 -- i n f ( J ( x  0, u ) l u  loc. int., x (oo)  = 0). 

(3.1) 

It is obvious that K ÷ satisfies the dissipation in- 
equality and so we also have F(K+)>~O. In fact, 
K + can be characterized as the maximal element 
in the set of  solutions of  the linear matrix inequal- 
ity F(K)>~ 0.. 

Lemma 4 [1]. l f  F( K )  >~ 0, then K <~ K + . 

Proof.  Let F ( K )  >I O. Define (C  r D r )  as in (2.7), 
and let J r  be the associated cost functional:  

Jr(No,  u) = IlCrx(t ) + Dru(t) l l2dt .  (3.2) 

Computa t ion  shows that, for every control  func- 
tion u such that 

lira x(  t ) = O, 

we have 

J r ( xo ,  u) = J(xo ,  u) - x'oKxo. (3.3) 

Taking infima on both  sides, we obtain 

0 ~< i n f ( J  x (x  0, u)lu s.t. x (oo)  = 0) 

= x~K+xo - x'oKx o. (3.4) 

The proof  also shows that the opt imal  cost, 
under  the condi t ion x ( ~ )  = 0, for the system (1.1) 
with cost functional Jr+ is equal to zero for every 
initial value x o. We can connect  this to right 
invertibility of  the transfer matrix Wr+ by making 
use of  results on 'cheap control ' .  First, we need the 
following lemma. 

Lemma 5. Define 1:( K; e) by 

A ' K + r A + c ' c  r +C'DI (3.5) 
B'K  + D'C D D + e2I ]" 

For e ~ O, the matrix 

K+ ( e) = max( K l K  symmetric, F( K; e) >/0) (3.6) 

is well defined, and K+(e) is non-decreasing as a 
function of e. Moreover 

lim K + (e) = K ÷ . (3.7) 
e ~ 0  
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Proof. Consider the system (1.1) with ' regularized' 
cost functional J~ defined through 

It is verified immediately that the associated dis- 
sipation matrix F~(K) is equal to F(K; e) as de- 
fined above. So K+(e) has the interpretation of 
representing ,,,~ optimal cost, under the condition 
x(oo) = 0, for the regularized system. This makes it 
obvious that K ÷(e) is a non-decreasing function 
of e. It follows that 

lim K + (e) 
e ~ 0  

exists; let us temporarily write the limit as K~-. 
Since the matrix-valued function F defined in (3.5) 
is jointly continuous in K and in e, we have, as 
K+(e) ~ K~ and e ~ 0, 

0 ~< F (K+(E) ;  e) ---' F ( K ~ ;  0). (3.9) 

This shows that F(K~)>~O, which implies, by 
Lemma 4, that K~- ~< K ÷. On the other hand, it is 
clear that K+<~ K+(e) for all c > 0, so that 

K + ~  lim K+(e) = K~.  
e ~ 0  

It follows that K~" = K ÷. 

The following result, which we shall use as a 
lemma,  provides the link between 'right invertibil- 
ity' and 'zero optimal cost'. The statement is actu- 
ally more precise than that. 

Lemma 6. Consider the system (1.1) with cost func- 
tional (1.2). I f  K + =  0, then the transfer matrix 
W( s ) has a right inverse with poles in the closed left 
half plane. 

earlier version was given in [5]. It has been argued 
in the literature that the result is trivial [6], but if 
this is true, it may well be that we have here one of 
those trivialities that do not allow easy proofs. 

We shall use the lemma as follows. As noted 
before, the optimal cost for the system with mod- 
ified cost functional defined by (CK+ DK+ ) is equal 
to zero. This implies that the associated transfer 
matrix Wr÷ has a (stable) right inverse. By the 
results of Section 2, this means that the rank of 
F ( K  ÷) must be equal to the lower bound rank W. 
This closes the circle, except for one point, which 
is taken care of by the following lemma. 

Lemma 7. Suppose that K >1 0 and F( K ) >10. De- 
fine (C x DK) as in (2.7). Then the pair (C x, A) is 
detectable. 

Proof. The matrices C x and C are related via 

ckc,, = A ' K +  KA + C'C. (3.10) 

Suppose now that there would be a real unstable 
(C K, A)-unobservable eigenvalue ~. Then there 
would exist an x :~ 0 such that Ax  = Xx and CKX 
= 0. By (3.10), this would imply 

0 = x 'A 'Kx + x 'KAx + x'C'Cx 

= 2Xx'Kx + x'C'Cx. (3.11) 

Since K >/0 and X >/0, it would follow that Cx = O. 
But this would contradict the standing assumption 
that the pair (C, A) is detectable. A similar proof 
can be given for the case in which there is a pair of 
conjugate complex unobservable unstable eigen- 
values. 

So our reasoning can be completed by the sim- 
ple observation that the matrix K + is, by its defini- 
tion, nonnegative definite. 

The most complete proof for this fact has been 
given, as far as the author knows, by Francis [4]. 
The result there is stated in terms of 

lim K [  , 
e ~ 0  

but according to Lemma 5, this is K ÷ . Actually, 
Francis considers only the ' totally singular' case 
(D = 0, in our notation), but this is inessential. (In 
particular, the result is also true in the regular 
case, as the reader will easily be able to verify.) An 

4. Main results 

We collect the results of our considerations in 
three theorems. 

Theorem 1. The minimal rank of the dissipation 
matrix F( K),  where K varies over the symmetric 
matrices satisfying F( K ) >1 O, is equal to the rank of 
the transfer matrix 

W(s)  = C(sZ - A ) - ' B  + D. 
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Theorem 2. The matrix K + , which defines the 
optimal cost under the endpoint condition 

lim x ( t )  = 0 
I ~ O O  

(see (3.1)), can be found as the maximal element 
among the set of all symmetric matrices K which 
satisfy the conditions F( K ) >I 0 and rank F (K  ) = 
rank W. 

Theorem 3. Let W( s ) be a given transfer matrix. 
Then there exists a transfer matrix W(s)  which 
satisfies 

¢v , ( - s )W(s )  = w , ( - s ) W ( s ) ,  

and which has a right inverse having poles in the 
closed left half plane. 

esting to describe the set of all matrices which 
minimize this rank and to develop a geometry for 
the right inverses, as was done for the regular case 

.in [1]. In the singular situation, the optimal control 
function does not exist unless impulses are al- 
lowed, and, in either case, it cannot be obtained 
from a feedback control law (cf. the discussion in 
[8]). It is possible, though, to construct approxi- 
mating sequences of 'high-gain' feedback control 
laws. This can be done via regularization (see 
Lemma 5), but it would be more interesting to 
develop procedures that are based on a direct 
computation of the optimal cost, using the char- 
acterization of Theorem 2. This would require a 
method to make this characterization numerically 
effective, which is an interesting problem of its 
o w n .  

In the regular case, the condition that the rank 
of the dissipation matrix be equal to the rank of 
the transfer matrix can immediately be refor- 
mulated as the algebraic Riccati equation. So it is 
reasonable to say that the rank minimization prob- 
lem for the dissipation matrix provides the proper 
generalization of the algebraic Riccati equation to 
the not necessarily regular case. 

Theorem 3 follows from the theory developed 
here by taking any stabilizable and detectable 
realization of W(s),  and by setting l)r'= WK. , 
where WK+ is defined through (3.1) and (2.8). The 
result is a version of a theorem of Youla on 
spectral factorization of rational matrices [7]. 

5. Conclusions 

Needless to say, many questions remain in con- 
nection with the minimization of the rank of the 
dissipation matrix. In particular, it would be inter- 
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