
Chapter 3 
Introduction 

3.1 Why Hedge? 

In many markets, companies face risks that are imposed from outside. For instance, 
a company producing toys and selling them abroad is faced wi th a currency risk. 
To protect the company from bankruptcy caused by this k ind o f risk, the company 
might look for trading strategies that reduce this risk. A trading strategy that is 
designed to reduce risk is called a hedging strategy. To reduce risk, hedgers can 
trade futures, forward, and option contracts. Both futures and forward contracts are 
agreements to buy or sell an asset at a future time T for a certain price (the so-called 
strike price). Thus both parties commit themselves to some action at time T. The 
difference between both contracts is that forward contracts are agreements between 
private institutions/persons, whereas futures contracts are contracts that are traded 
on an exchange. A n option contract gives the holder the right to buy/sell an asset 
by a certain date T for a certain price. A n option that gives the holder the right to 
buy an asset is called a call option, and one that gives the holder the right to sell an 
asset is called a put option. Unl ike wi th futures and forward contracts, holders of an 
option are not obligated to exercise their right. For instance, wi th a call option, say 
the right to buy some raw material at time T for a price o f 2, i f i t turns out that at 
time T the actual price o f the material is 1, then a company holding this option w i l l 
not exercise its right to buy the material for a price of 2. 

Forward contracts are designed to neutralize risk by fixing the price that the 
hedger w i l l pay or receive for the underlying asset. Option contracts provide 
insurance. Wi th an option a company can protect itself against, for example, 
unfavorable price swings while benefiting from favorable ones. As in the preceding 
example, the company holding the call option insures itself that it w i l l not have to 
pay more than 2 for its raw material at time T, and i t can buy the raw material for 
the actual price at time T i f i t is smaller than 2. 

Another distinction between futures/forward contracts and option contracts is 
that it costs nothing to enter into a futures contract, whereas the holder o f an option 
contract has to pay a price for i t up front. 

P. Bernhard et al., The Interval Market Model in Mathematical Finance, Static & Dynamic 31 
Game Theory: Foundations & Applications, D O I 10.1007/978-0-8176-8388-7_3, 
O Springer Science+Business Media New York 2013 



32 3 Introduction 

Notice that a contract always involves two parties - the one wri t ing the 
contract and the one buying the contract. A n important point to make about the 
smooth functioning o f the futures, forwards, and options markets is that there is 
a mechanism to guarantee that both parties of a contract w i l l honor the contract. 
That is, there are mechanisms (like daily settlements) in place so that i f one o f the 
parties does not live up to the agreement, the other party w i l l not have to resort 
to costly lawsuits. Furthermore, the markets should be such that for each side of 
a contract there is someone that is prepared to take the opposite position in the 
contract. Usually this means that in futures markets two other types of traders take 
positions too, i.e., speculators and arbitrageurs. Speculators are wi l l i ng to take on 
the risk o f a contract. Arbitrageurs take offsetting positions in different markets to 
lock in a profit without taking any risk. 

Hedging is used to avoid unpleasant surprises in price movements. This can be 
appropriate i f one owns an asset and expects to sell it at some future time T (like a 
farmer who grows grain) or i f one has to buy a certain asset at time T and wants to 
lock in a price now (like the company who needs raw material at time T). Another 
reason for hedging can be that one is planning to hold a portfolio for a long period of 
time and would like to protect oneself against short-term market uncertainties. High 
transaction costs o f selling and buying the portfolio back later might be a reason to 
use this strategy. In that case one can use stock index futures to hedge market risk. 

However, in practice many risks are not hedged. One reason is that risk hedging 
usually costs money. Another reason is that one should look at all the implications 
of price changes for a company's profitability. I t may happen that different effects 
of a price change on the profitability of a fïrm w i l l offset each other. That is, the 
company is already hedged internally for this price change. 

Problems that may arise in hedging include the hedger's not knowing the exact 
date the asset w i l l be bought or sold, a mismatch between the expiration date of the 
contract and the date required by the hedger, a hedger's ability to hedge only a proxy 
of the asset on the market. 

Also, situations exist where one would like to mitigate a risk that w i l l arise far 
into the future at time T but there exist no futures contracts to hedge this risk (like a 
pension fund that makes commitments to pay pensions in the distant future). A usual 
approach to tackling such a situation is to rol l the hedge forward by closing out 
one futures contract and taking the same position in a futures contract wi th a later 
delivery date and repeating this procedure until one arrivés at time T. 

As indicated previously, the main reason that hedging was introduced was to 
reduce trading risk, that is, to shift (a part of) the risk to another trader who either 
has greater expertise in dealing wi th that risk or who has the capability to shoulder 
the risk. A n important issue in the context o f the latter case is that for large traders it 
is in practice not always clear what the exact risk position is they have taken. Clearly 
one should try to improve on this situation. One should avoid situations where large 
traders cannot meet their commitments. How to improve on this is an ongoing 
discussion. One line o f thinking is to formulate more explicit rules traders must 
follow. Within this context one should keep in mind that optimal trading strategies 
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often occur at the boundaries of what is allowed. So these rules should anticipate 
such behavior. 

3.2 A Simplistic Hedging Scheme: The Stop-Loss Strategy 

A well-known simple hedging strategy is the so-called stop-loss strategy. To 
illustrate the basic idea, consider a hedger who has written a call option wi th a 
strike price o f X to buy one unit of a stock. To hedge his position, the simplest 
procedure the hedger could follow is to buy one unit of the stock when its price 
rises above X and to sell this unit again when its price drops below X. In this way 
the hedger makes sure that at the expiration time T o f the option he w i l l be in a 
position where he owns the stock i f the stock price is greater than X. Figure 3.1 
illustrates the selling and buying procedure. 

Note that basically four different situations can occur. Denoting the stock price at 
time t by S(t), (1) 5(0) and S(T) are less than X; (2) 5(0) and 5(7/) are greater than 
X; (3) 5(0) > X and 5(77) < X; or (4) 5(0) < X and S(T) > X. Denoting [K}+ = 
m a x { ^ , 0 } , i t follows directly that the total revenuesfrom hedging and closureunder 
these four different scenarios are as follows: 

(1 ) -[S(T)-X]+ = 0, 
(2) -S(0)+S(T)-[S(T)-X]+=X-S(0), 
(3) -S(0)+X-[S(T)-X]+=X-S(0), 
(4) -X + S(T)-{S(T)-X}+ =0. 

respectively. Notice that in cases (1) and (4), 5(0) < X. Therefore, we can rewrite 
the total revenues from hedging and closure in compact form as —[5(0) — X}+. We 
state this result formally in a theorem. 

buy sell buy 
i i i — 

Fig. 3.1 Stop-loss strategy 
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Theorem 3.1. The total costs of hedging and closurefor a call option using a stop-
loss strategy is ö s l o P - l o s s ( 5 0 ) = [5(0) -X}+. • 

Or, stated differently, the total cost o f hedging and closure equals the intrinsic value 
of the option. 

However, notice that we ignored transaction costs associated wi th buying and 
selling the stock under this strategy. Furthermore, i f we assume that trading takes 
place continuously in time, then an important issue is that the hedger cannot know 
whether, when the stock price equals X, it w i l l then rise above or fall below X. These 
issues imply that in practice this hedging scheme usually does not work as wel l as 
one might have hoped. For a further discussion on this issue we refer the reader to, 
for example, [88]. 

3.3 Risk-Free Hedging in the Binomial Tree Model 

In this section we recall the well-known binomial tree model that was analyzed by 
Cox et al. [57] to price options under the assumption that there exist no arbitrage 
opportunities.1 For a more extensive treatment o f this subject, we refer the reader 
to, for example, H u i l [88, Chap. 12]. 

Consider a market wi th a single underlying asset. Assume a discrete-time setting 
where time points are indicated by t j , j = 0 ,1 ,2 , . . . . The price of the asset at time 
tj w i l l be denoted by Sj. A n asset price path is a sequence 

5 = { 5 o , . . . ,SN}, 

where the init ial price 5o is fixed throughout and represents the time horizon, 
which is also assumed to be fixed. The binomial tree model Mu'd consists o f all 
price paths that just allow one specific upward and downward price movement at 
any point in time: 

B « , d ._ ^ | S j + i €{djSjjUjSj} for j = 0 , 1 , . . . , N- 1 } . 

Here Uj and dj are theproportionaljumpfactors at time t j . We depict this in Fig. 3.2. 
Now consider an ini t ial portfolio of a trader who sold one option contract at time 

fo to buy the asset at price X at time f# (i.e., he went short one European2 call 
option wi th a strike price o f X) and who owns a fraction AQ o f the asset. Wi th in this 
binomial model framework one can easily price this option over time and design a 
trading strategy on the asset such that the final value o f this portfolio, where AQ is 
chosen in a specific way that w i l l become clear later on, is independent of the price 
path o f the asset. That is, i f at any point in time we adapt the fraction of the asset 
in our portfolio according to this, so-called delta hedging, trading strategy, then the 
(net present) value of the portfolio w i l l remain the same. Thus this trading strategy 

That is, i t is not possible to earn a profit on securities that are mispriced relative to each other. 

2 A European style option contract can be exercised only at the option's expiration date. 
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tells us at any point in time how many units of the stock we should hold for each 
option contract in order to create a portfolio whose value does not change over time. 
Such a risk-free portfolio can be set up because the price of the asset and option 
contract have the same underlying source of uncertainty: the change in asset prices. 

To determine this option contract's price and a strategy to trade it over time, 
we proceed as follows. Let fj(Sj) denote the value (price) of the option contract at 
time tj i f the price of the asset at time tj is Sj. Assume that our portfolio consists at 
time tj o f Aj shares o f the asset and the option contract. Then, since the trader has 
the obligation to pay the buyer of the option contract the value of the contract at t^, 
the value o f his portfolio at time tj+\s 

AjUjSj - fj+i (UJSJ) i f Sj+i = UjSj and AjdjSj - fj+1 (djSj) i f Sj+] = djSj, 

i f the stock price moves up/down, respectively. 
Thus the portfolio has the same value in both scenarios i f AjUjSj— fj+\{ujSj) = 

AjdjSj — fj+\(djSj), that is, i f we choose Aj as follows: 

1 fj+i(ujSj) - fj+ijdjSj) 

Si Ui —dj 
A . = f ' " " ^ J t l v J " J / . (3.1) 

Stated differently, i f we choose Aj as the ratio o f the change in the price of the stock 
option contract to the change in the price of the underlying stock [cf. (3.1)], then 
the portfolio is risk free and must therefore earn the risk-free3 interest rate rj. Thus, 
denoting the time elapsed between tj+\d tj by Atj, we obtain the present value o f 
the portfolio at time tj as 

(AjUjSj-fj^tujSj^e rJAtJ. 

On the other hand, we know that this value equals AjSj — fj{Sj). So we get 

{AjuSj - fj+i ( U j S j ) ) e - ^ ' j = AjSj-fjiSj). 

S j + 1 - UjSj 

Fig. 3.2 Asset price movements in binomial tree 

3Usually this is the interest rate at which banks wi l l lend to each other. 
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Substitution o f Aj from (3.1) then yields the fol lowing backward recursion formula 
for the option price fj: 

f _ fj+^UjSj^l-djC-^ + fj^djSj^Ujt-n^ - 1) 

f j ( j ) - u ^ d j 

= </ , / ) . i (UJSJ) + ( e ^ -q})fj+x(djSj). w i th (3.2) 

fN(SN) = {SN-X} + . (3.3) 

Here qj := 
j J 

From this recursion formula for the price (3.2) we can now also derive directly the 
fol lowing recursion formula for the corresponding delta-hedging trading strategy: 

Aj(Sj) = XjAJ+1 (UJSJ) + (1 - Xj)Aj+, (djSj). w i th (3.4) 

• / c x [UN-\SN-\+ - [dN-\SN-\ X}+ 

A v - l ( " V - l ) = -, -, • (3.0) 
(UN-\ a jv- l P / v - i 

Here Xj = Ujqj. 

We w i l l just show the correctness of (3.4). That (3.5) is correct is easily verified. 
Substitution o f (3.2) into (3.1) gives 

1 fj+x{ujSj)-fj+\(djSj) 

1 

Sj Uj — dj 

- {qjfj+2{u)Sj) + ( e - ^ 0 _ qj)fj+2{UjdjSj) 
s j \ j - d j ) L 

-qjfj+2(ujdjSj) - (^'1^qj)fj+2(d2JSj)) 

'IJ 

Sj(uj~dj) 

-rjAti 

{fj+2{ujSj) - fj+2(ujdjSj)} 

+ tSj(ujJ-dj) {fi+2(u}djSj)-f]+2(d]Sj)} 

= iujS^-dj) {fM»A«m-fMWA))} + Z^-t 

{fj+2{uj{djSj))-fj+2{dj{djSj))} 

= XjAj+l(ujSj) + (l-Xj)Aj+l(djSj). 

Remark 3.2. (1) Notice that for all ;', 0 < Aj < 1. 
(2) The same procedure can also be used to value an option to sell an asset at a 

certain price at time f/v (European put option) and to determine a trading strategy 
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such that the net present value of a portfolio consisting o f the option and a 
number o f shares does not change over time. 

(3) The presented formulas can be used also to value so-called American style 
option contracts, i.e., option contracts that can be exercised at any point tj 
in time. Working backward in time, the value o f such an option at time tj is 
the maximum of the value given by (3.2) at tj and the payoff from exercise at tj. 
We illustrate this in Example 3.3 below. • 

Example 3.3. Since European and American call options (wi th no dividend 
payments for the stock) yield the same price, we w i l l consider in this example 
the valuation of a put option contract in a two-step binomial model. The init ial 
price of the corresponding stock is 190 euros and the strike price is 200 euros. We 
assume that each time step is 3 months long and the risk-free annual interest rate 
is 12%. In the first time step the price may go up by a factor uo = and down by 
a factor do = | | . I n the second time step the potential growth factor is U] = 1.1 and 
the potential decline factor is d\ 0.98. This leads to the stock prices illustrated in 
Fig. 3.3. The upper number at each node indicates the stock price. 

The payoff from the European put option is at time t^ given by [X — SN} + . 
A t time tj, j < N its value is determined by the backward recursion (3.2), where 
q\ 0.408, qo = 0.766, and rjAj = 0.03. A t each node of the tree the lower number 
indicates the option price. In Fig. 3.3a the price of the European style option is 
indicated. Figure3.3b shows how prices are affected i f early exercise of the option 
is allowed. • 
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3.4 Relationship with the Continuous-Time 
Black-Scholes-Merton Model 

The binomial model is often used numerically to value options and other derivatives. 
This is motivated from the well-known Black-Scholes (or Black-Scholes-Merton 
or Samuelson) model (see [46]). In their seminal paper, Black and Scholes assumed 
that the relative return on a stock (wi th no dividend payments) in a short period o f 
time was normally distributed. Assuming that / I is the expected return on the stock 
and o is the Standard deviation (volatility) o f the stock price S, the expected return 
over the time interval [fo,fn + At] 1 S m e n fiAt, whereas the Standard deviation o f the 
return over this time interval is G\/~At. That is, 

~N{j±At.ü2At). (3.6) 

where AS is the change in the stock price S from t = to to t = to + At, ji is the 
expected return on the stock, and O is the Standard deviation o f the stock price. 

Following Merton's approach (e.g., [118]) this can be motivated as follows. 
Assuming that the expectation mentioned below exists, consider the random variable 

AWj = (Sj-Sj-l)-EJ-i[Sj-SJ-l]. 

Here, [S] is the expectation o f S conditional on the information that is available 
at time tj- j . 

Thus AWj is the part in Sj — Sy_] that cannot be predicted given the available 
information at time tj-\. Moreover, we assume that AWj can be observed at time 
tj, that is, Ej[AWj] = AWj, and that the AWj are uncorrelated across time. AWj is 
called the innovation term o f the stock price because 

Sj=Sj-l+EJ-l[Sj-Sj-l}+AWj. 

Now let Vj = E0[(AWj)2] denote the varianceof AWj and V = £ 0 [ (Xy= i AWj)2} the 
variance o f the cumulative errors. Since the AWj are uncorrelated across time, it 
follows that 

N 

y'=i 

In finance the next three assumptions on Vk and V are widely accepted. 

Assumption 3.4. Consider a fixed time interval [to-to + T], where stock prices are 
observed at N equidistant points in time tj, j = 0.....N. Then there exist three 
positive constants c,- > 0, i = 1,2,3, that are independent of the number of points N 
such that: 

1. V > c\ 0, that is, increasing the number of observations o f stock prices w i l l not 
completely eliminate risk. There always remains uncertainty about stock prices. 
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2. V < C2 < °°, that is, i f more observations of stock prices, and therefore more 
trading, occurs, then the pricing system w i l l not become unstable. 

3- max{v- VJ=i—TvJ — c 3 : j= 1 ,N, that is, market uncertainty is not concentrated 
in some special periods. Whenever markets are open, there is at least some 
volatility. • 

Merton [118] used these three assumptions to prove that the innovation term AWj 
has a variance that is proportional to the length of the time interval At that has 
elapsed between tj and r , _ i (see also [121] for a proof o f the next result). 

Theorem 3.5. Under Assumption 3.4 there exist finite constants Oj that are inde
pendent of At such that Vj = O2 At. The Oj dependon the available information at 
time tj-\. • 

The next step to motivate (3.6) is to give an approximation for the conditional 
expectation o f the change in stock prices [Sj — Sj-\]. Notice that this expec
tation depends both on the available information at time r y - _ i , which we w i l l denote 
by Ij, and on the length of the time interval At. Assuming that this is a smooth 
function ƒ ( / / _ ] -At) we can use Taylor's theorem to approximate this expectation as 
follows: 

E M [Sj - Sj.,} = ƒ ( ƒ , - _ , , ( ) ) + d f { I i ^ - A t ) A t + h{(Atf), 

where h{.) contains the higher-order terms in At. Now, i f At = 0, then time w i l l 
not pass and the predicted change in stock prices w i l l be zero, i.e., f{Ij- \) = 0. 
Therefore, neglecting the higher-order terms in At we have that 

df {Ij-u At) 
tj-i[Sj-Sj-\\Ki ^ At. (3.7) 

Therefore, assuming additionally that the increments have a normal distribution, 4 

we arrivé at (3.6). 
Assumption (3.6) implies that the stock price S(t) has a lognormal distribution. 

That is, given the price o f the stock at time t = 0 is 5b, the distribution of the natural 
logarithm of the stock at time t is 

\n(S(t))^N(HS0)+(^-^jt.o2t). 

Thus the expectation and variance of S(t) are 

E[S(t)} = SQ^' and a2[S(t)\ S g e 2 ^ 6 " 2 r e s p e c t i u e l y . 

Together with the previous assumptions made on Wj this implies that Wj is a Brownian motion. 
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Furthermore, we conclude wi th 95% confidence that 

ln(So) + (n - Y ) f - z f ayfi < ln(S(0) < LN(5°) + ~ Y ) f + z^oVt, 

where za « 1.96 is the number that satisfies <P(z«) = § = 0.975. Here 0(d) is the 

cumulative Standard normal distribution evaluated at d.5 This implies that 

S b * d : = e ^ < S(f) < e ï = : 5 o * « -

Thus, there is a 95% probability that the stock price w i l l lie between Sod and Sou. 
These numbers u and d give, then, some educated guesses for the corresponding 
numbers in the interval model we w i l l discuss in Sect. 3.5.2. 

In practice when the binomial model is used to value derivatives, and conse-
quently At is small, one often uses u = \ e 0 ^ ' . This choice has the advantage 
that the tree recombines at the nodes, that is, an up movement followed by a down 
movement leads to the same stock prices as a down movement followed by an up 
movement. Furthermore, since ud = 1, one can easily calculate the price at any 
node. Notice that wi th in the foregoing context w i th z» = 1, this choice implies that 
there is a 16% probability that the stock price w i l l be lower, a 16% probability that 
it w i l l be higher, and a 68% probability that it w i l l be between these upper and lower 
bounds. 

Black, Scholes, and Merton also derived pricing formulas for European calls 
and puts under the assumption that stock prices change continuously under the 
assumption o f (3.6). They showed that the corresponding unique arbitrage-free 
prices for call and put options are 

/ 0 ( S 0 ) = 0{d])So-&~r{tN'ro)<P(d2)X and 

MSo) = e-r^-^0(-d2)X-So4>(-d^, (3.8) 

respectively, where d\ ' " ( ^ ) + a ( f f i V " ' ° 1 . d 2 = d x - O^/W^U). 

Example 3.6. Consider the pricing of a European call option when both the stock 
and strike prices are 50 euros, the risk-free interest rate is 10% per year, the volati l i ty 
is 40% per year, and the contract ends in 3 months. Then, wi th r = 0 .1 , O = 0.4, 
tN — to = 3/12, and SQ = X = 50, the price o f this call option is, according to (3.8), 
fo = 4.58. In Fig. 3.4 we illustrate the pricing of this option using (3.2), (3.3) in a 
corresponding binomial tree wi th N = 3, which implies At = 1/12 and u = j = 
eo\/Al _ j 1224. The price that results in this case is fo — 4.77. I f we take a smaller 
grid N = 6, implying A = 1 / 2 4 and u = \ e C T ^ =1 .1224 , a price o f 4.42 results. 

3 Or, the probability that a variable with a Standard normal distribution wi l l be less than d. 
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70.70 

0 

Fig. 3.4 Call option valuation in binomial tree 

It can be shown in general that by increasing the number o f grid points N, the price 
in the binomial model w i l l converge to the continuous-time-model price (3.8). • 

3.5 Risk Assessment Models 

3.5.1 Current Models 

Since the publication of the Black-Scholes formula [46], the theory of option 
pricing has gone through extensive developments in both theory and applications. 
Today it is the basis o f a mult ibi l l ion-dollar industry that covers not only stock 
options but also contracts written on interest rates, exchange rates, and so on. The 
theory has implications not only for the pricing of derivatives, but also for the 
way in which the risks associated wi th these contracts can be hedged by taking 
market positions in related assets. In fact the two sides o f the theory are linked 
together inextricably since the theoretical price o f an option is usually based on 
model assumptions that imply that all risk can be eliminated by suitable hedging. In 
daily financial practice, hedging is a theme that is at least as important as pricing; 
indeed, probably greater losses have been caused by misconstrued hedging schemes 
than by incorrect pricing. 

Given the size of the derivatives markets, it is imperative that the risks associated 
wi th derivative contracts be properly quantified. The idealized model assumptions 
that usually form the basis o f hedging constructions are clearly not enough to 
create a reliable assessment of risk. Value-at-Risk (VaR) was introduced by Morgan 
[119] as a way of measuring the sensitivity o f the value o f a portfolio to typical 
changes in asset prices. Although the VaR concept has been criticized on theoretical 
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grounds (see, for instance, Artzner et al. [2]) , it has become a Standard that is 
used by regulatory authorities worldwide. For portfolios wi th a strong emphasis 
on derivative contracts, the normality assumptions underlying the VaR methodology 
may not be suitable, and additional ways o f measuring risk are called for to generate 
a more complete picture. 

Often, stress testing is recommended, in particular by practitioners, as a method 
that should supplement other measures to create a full picture of portfolio risk 
(see, for instance, Basel Committee [24], Laubsch [107], and Greenspan [78]). 
The method evaluates the performance o f given strategies under fairly extreme 
scenarios. In particular, in situations where worst-case scenarios are not easily 
identified, stress testing on the basis o f a l imited number of selected scenarios may 
be somewhat arbitrary, however. I t would be more systematic, although also more 
computationally demanding, to carry out a comprehensive worst-case search among 
all scenarios that satisfy certain l imits. 

Major concerns associated wi th worst-case analysis are firstly, as already men-
tioned, the computational cost and, secondly, the dependence of the results on the 
restrictions placed on scenarios. The latter problem cannot be avoided in any worst
case setting; in the absence of restrictions on scenarios, the analysis would not lead 
to meaningful results. To some extent, the second problem may be obviated (at the 
cost o f increased computational complexity) by looking at the results as a function 
of the imposed constraints. Among an array o f risk management tools that are l ikely 
to be used jo in t ly in practice, worst-case analysis may be valued as a method that is 
easily understood also by nonexperts. 

In the Standard Black-Scholes model, there is one parameter that is not directly 
observable, volatility. When the value o f this parameter is inferred from actual 
option prices, quite a bit o f variation is seen both over time and across various 
option types. It is therefore natural that uncertainty modeling in the context o f option 
pricing and hedging has concentrated on the volatil i ty parameter. In particular, the 
so-called uncertain volatility model has been considered by a number of authors 
[18,108,146] . In this model, volatili ty is assumed to range between certain given 
bounds, and prices and hedges are computed corresponding to a worst-case scenario. 

The uncertain volati l i ty model as proposed in the cited references assumes 
continuous trading, which is o f course an idealization. In the fol lowing sections, 
we consider a discrete-time version that we call the interval model. In this model, 
the relative price changes o f basic assets from one point in time to the next are 
bounded below and above, but no further assumptions concerning price movements 
are made. 

3.5.2 Interval Model 

Interval models naturally arise in the context of markets where uncertainty instead 
of risk plays a dominant role, that is, i f the uncertainty cannot be quantified in , e.g., 
a probability distribution. For instance i f one would like to launch a completely 
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new product for which there as yet no market, i t is almost impossible to assess 
the involved risk o f price changes. Also, in actuarial science well-known variables 
that are uncertain are, for example, life expectancy, evolution of wages, and interest 
rates. Further, in general, model risk cannot always be quantified in a stochastic 
framework. Therefore, we w i l l approach price uncertainty here differently. We w i l l 
assume that tomorrow's prices can fluctuate between some upper and lower bounds, 
which are given. For the rest we do not have a clue as to which price in this interval 
w i l l be realized. 

Formally, an interval model is a model of the form 

r , d ._ | ^ | S j + i e [dSj,uSj] for / 0 . 1 . : . . . . ] . (3.9) 

where u and d are given parameters satisfying d < 1 < u. The fol lowing figure 
illustrates a typical step in the price path o f an interval model. 

uSj 

Sj+{ = VSJ, d <v <u 

dSj 
The model parameters u and d denote respectively the maximal and minimal growth 
factor over each time step. 

A n important issue is how these models relate to the binomial tree model and the 
continuous-time Black-Scholes-Merton model considered in Sect. 3.3. 

The interval model may be compared to the Standard binomial tree model wi th 
parameters u and d [57]: 

Bu.d . | v j S j + ] e { (/.s\, ;.s.} for /• o . i . : . . . . } . 

The binomial tree model just allows one specific upward and downward price 
movement. I t pro vides boundary paths for the interval model \ . As already 
mentioned in Sect. 3.3, binomial models are motivated mainly by the fact that they 
can be used to approximate continuous-time models by letting the time step tend 
to zero. In contrast, the interval model may be taken seriously on its own, even for 
time steps that are not small. 

Compared to the continuous-time modeling framework o f Black, Scholes, and 
Merton, we recall from Sect. 3.4 that the continuous time models postulate a 
lognormal distribution for future prices. That is, wi th tg = 0, 

Sj 
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The stepwise comparison wi th interval models is straightforward. For a given price 
Sb at time fo = 0, the statement on the next price S\t time t\s 

according to the interval model, while the continuous-time model postulates 

The rirst statement is nondeterministic, though it may be interpreted in a stochastic 
sense, wi th rj-f ield { 0 . [ln(rf),ln(u)]} and their complements in R, and probability 
one assigned to the interval. Under Assumption (3.11), the statement (3.10) is true 
wi th probability < p ( ' n ( ^ ' - ^ ) - 0(LN^~^ - ^ - ) . In particular, under the extra 
symmetry condition ud = \ and d are fixed by specifying a confidence level for 
that probability. It is harder to compare the models globally over several time steps. 

(3.10) 

(3.11) 


