Family Portrait

The Crucial Role of News Media Coverage and Perceived Effectiveness of a New Party

Joost van Spanje and Rachid Azrout

University of Amsterdam
Abstract

For new parties, it is arguably crucial to receive news media attention. News media shape a new party’s image. What aspects such image is made of is not clear from the literature. Some scholars have argued that a new party’s perceived effectiveness is key – but is it really? Ideally, we would test this in the ‘clean’ context of a new party that clearly is in an abysmal state, of which increasing numbers of voters become aware. In 2014, the Dutch party 50Plus experienced exactly that. The present study examines this case, using three complementary research designs, involving a voter panel survey, an automated media content analysis, and a quasi-experiment. The findings show the dominant role of perceived effectiveness, mediating the effect of visibility and tone of 50Plus coverage on propensity to vote for that party. Implications are discussed in light of the role of news media in democratic societies.

Keywords: New parties; Elderly parties; Elections; News media; Perceived party effectiveness; Quasi-experimental setting; Media content analysis; Panel survey
Family Portrait

The Crucial Role of News Media Coverage and Perceived Effectiveness of a New Party

Last June, Movimento Cinque Stelle joined a government coalition in Italy. Nine months earlier, Alternative für Deutschland shocked the world by entering the Bundestag. Less than two years before that, Podemos obtained 21% of the vote in its first general election in Spain. The spectacular success of these and other new parties throughout Europe is truly impressive.

Yet, such success stories are only the (successful) tip of the (largely unsuccessful) new party iceberg. For instance, in the Netherlands since 1948 new parties that failed to obtain national parliamentary representation have outnumbered new parties that succeeded ten to one (Krouwel & Lucardie, 2008; AUTHORS, 2016). What allows new parties to survive the onslaught of electoral competition, and what causes them to die?

This is an important question. New party entry may, on the one hand, be healthy for a democratic system: new parties often carry new political ideas and bring new voices, and openness to new ideas and voices is a necessary condition for democracy. On the other, it may be problematic to have too many new parties. This is because frequent new party entry may reduce the quality of representation, preventing voters from having meaningful ties with parties (cf. Tavits, 2006).

Political scientists seem unable to offer a clear answer to this question. Obviously, news media should be part of any such answer. However, studies of new parties pay little attention to news media. Vice versa, studies of news media pay little attention to new parties. As a result, the many assertions that news media matter for new party success (e.g., Bolleyer, 2013, p.8; Lucardie, 2000, p.182) have not translated into clear ideas of how exactly news media matter.

In the present study we take a modest step beyond the relevant literature in four ways. First, we propose a theoretical mechanism through which news media affect voting for new parties. Building on literature on anti-immigration parties we argue that a particular factor plays a role: perceived party effectiveness. Second, we construct a reliable scale to measure perceived
effectiveness. Third, we use a novel theoretical model of media effects, applying it to electoral behaviour. Fourth, we employ three research designs, combining observational and quasi-experimental data, to empirically test media effects on voting for a new party.

To test the mechanism, we would need variation in news media attention and in perceived effectiveness. Ideally, we would study a clear worst case scenario for a new party, in which that party is split in two, both halves engaging in a relentless fight played out in the media. The case of the Dutch elderly party 50Plus in 2014 offers precisely this. Studying this case allows us to draw valid inferences on effects of exposure to news media coverage of a new party on its perceived effectiveness, and of perceived effectiveness on voting for that party. This way, we significantly further our understanding of electoral success and failure of new parties in mature democracies.

New parties

The new party literature dates back about half a century. Having started off in a US context (Rosenstone, Behr, & Lazarus, 1984; Sundquist, 1983), it soon crossed the borders and ventured into, most notably, Western Europe. Some studies still focused on just one country (Lago & Martinez, 2011) or two (Beyens, Lucardie, & Deschouwer, 2016), others ranged between nine (Hauss & Rayside, 1978) and 53 countries around the globe (Janda & Gillies, 1980).

In terms of time period, Rochon (1985) went back as far as 1918 and Rosenstone et al. (1984) as far as 1840, whereas most studies started either in the wake of WWII (Hino, 2006; Van de Wardt, Berkhout, & Vermeulen, 2017) or in 1960 (Bolin, 2014; Zons, 2015).

The literature also varies in its scope in other ways. Some studies focus on one particular new party (e.g., the German green party in Schmitt-Beck, 1994), others on one new party type (e.g., anti-immigrant parties in Van der Brug, Fennema & Tillie, 2005). Relatively few studies concern new parties more generally, and from a comparative perspective.

Just as any literature, the literature on new parties has its shortcomings. For instance, it has neither reached consensus on what exactly constitutes a ‘new’ party. Just as an example, Beyens et al. (2016) considered fissions, mergers, and successor parties ‘new,’ Mair (1999) counted fissions
and mergers but not successor parties, Hug (2001) excluded not only successor parties but also mergers, whereas Emanuele and Chiaramonte (2018) did not include any of these three categories, only examining ‘genuinely new’ parties.

New parties and news media

A key element missing from the new party literature is the role of news media. Although news media are doubtlessly crucial for new parties, work on news media coverage of new parties is relatively scarce. Hardly any study has even mentioned the possibility that news media would have an impact on new parties’ electoral performance.

Exceptions include Lucardie (2000) and Bolleyer (2013). However, they mention media only in passing. Lucardie (2000, p.180) claims that “mass media may nip a new party in the bud by ignoring or ridiculing it when it tries to enter the political arena.” Bolleyer (2013, p.8) remarks that “increased media attention following national breakthrough is as much an opportunity to showcase achievements as to expose incompetence.” Although both should be commended for bringing in the media, neither of them tells us under which circumstances or how news media affect the electoral performance of new parties, or what it is in the media image that might scare away voters. All in all, this leaves us with little knowledge about the electoral effects of the coverage of new parties.

Perhaps most of the work that actually acknowledges the importance of news media is about new parties on the right side of the political spectrum (Birenbaum & Villa, 2003; Ellinas, 2010; Mazzoleni, 2003; Plasser & Ulram, 2003; Schafraad, d’Haenens, Scheepers, & Wester, 2012). Coverage of new parties more generally has not often been mapped; the reasons for the considerable variation in new party coverage have remained largely unexplored (exception: AUTHORS, 2016).

New parties, news media, and the vote

In his study of a newspaper’s newsroom, White (1950) found that 90% of the wire copy was rejected. Similarly, an enormous amount of news about new parties is ‘killed’ every campaign
day – and an enormous number of new parties is ‘killed’ every election day: Even in the permissive Dutch context, 90% of the parties fail to obtain representation in their first general election (Krouwel & Lucardie, 2008). Does the one cause the other – and if so, how, and to what extent?

The literature on news media coverage tends to focus on established parties (Baumgartner & Chaqués-Bonafont, 2015; Hopmann, Aelst, & Legnante, 2011; Hopmann, De Vreese, & Albaek, 2011). Established parties receive attention from news media, and benefit electorally from such attention in various ways (Hopmann, Vliegenthart, De Vreese, & Albaek, 2010; Kleinnijenhuis, Hoof, Oegema, & De Ridder, 2007; Norris, Curtice, Sanders, Scammell, & Semetko, 1999). New parties are a different matter. For them it is both more difficult and more important to receive news media attention (cf. Art, 2006; Bennett, 1990).

However, little empirical knowledge exists on election outcomes regarding new parties in general. In fact, there is even lack of consensus on what to measure in this respect. Rosenstone et al. (1984) studied both the emergence of new parties and their performance, and Mair (1999) and Hug (2000) followed them in this. However, some colleagues studied only their emergence (Bolin, 2014; Lago & Martinez, 2011) and others focused on their performance (Bolleyer & Bytzek, 2017; Willey, 1998). Again others studied their durability (e.g., Bolleyer, 2013; Janda & Gillies, 1980) or their sheer number in combination with performance (Harmel & Robertson 1985) or emergence (Zons, 2015).

Again, about media effects on support for right-wing new parties quite some research exists (Boomgaarden & Vliegenthart, 2007; Vliegenthart, Boomgaarden, & van Spanje 2012; Burscher, van Spanje, & De Vreese 2015; Berning, Lubbers, & Schlueter 2018; Van Spanje & Azrout, 2018). Research explicitly linking news media attention to electoral performance starts from the finding that support for “right-wing populist leaders” is motivated by the same types of ideological and pragmatic considerations as support for established leaders (cf. van der Brug, Fennema, & Tillie, 2000; van der Brug & Fennema, 2003). They test whether there are
nonetheless differences between “right-wing populist leaders” and other leaders in terms of the
effect of news coverage on their electoral performance. They find no such differences (Bos et al,

To investigate this, Bos and co-authors look at news media coverage of “right-wing
populist leaders,” on the one hand, and perception of these politicians, on the other. Relevant
ways to cover them include “prominence” and “authoritativeness.” They assert that prominence
signals that a new party is “one of the parties that may get to power, or they are at least in sight of
a number of seats in parliament. Hence, if voters want to influence the political game, voting for
these parties is rational and will not lead to a lost vote” (Bos et al., 2011, p.197). Authoritativeness
“refers to how knowledgeable a politician appears to be” (Bos et al., 2011, p.183). Relevant voter
perceptions include “effectiveness” (Bos & van der Brug, 2010; Bos et al., 2010, 2011). These
leaders should strike a balance between ensuring prominence by being provocative and ensuring
perceived effectiveness. “Right-wing populists who are able to reach that balance (..) will be most
successful” (Bos et al., 2010, p.143).

Hypotheses

In the present paper we measure evaluative tone instead of “authoritativeness.” So, we
build on the concepts of “prominence” and tone in news media coverage and the concept of
“perceived effectiveness” in the eyes of news consumers. We integrate these concepts into a
dominant model of media effects, the Differential Susceptibility to Media Effects Model (DSMM), see
Valkenburg and Peter (2013). That model builds on various pre-existing models of media effects,
distinguishing between differential susceptibility factors, media use, response states, and media
effects. Differential susceptibility factors denote how and to what extent a media consumer is
predisposed to react to media use, whereas the responses states (that do not last beyond the
media use context) and media effects (that may last longer) describe ways in which the media
customer reacts.
Building on this model and consistent with the relevant literature (Hopmann et al., 2010; Bos et al., 2011) we expect that the volume of exposure to the new party in the news media increases voters’ propensity to vote for it (Hypothesis 1). At the same time, in accordance with the literature (Hopmann et al., 2010; Bos et al., 2011) we expect that tone matters for the propensity to vote in such a way that a more positive (/negative) the tone of the coverage of a new political party increases (/decreases) the propensity to vote for that party (Hypothesis 2). Except for a main effect of tone, we also expect tone to moderate the effect of the volume of exposure, in such a way that when the tone is more positive the marginal effect of the volume of exposure has a positive effect on the propensity to vote (Hypothesis 3a) and when the tone is more negative the marginal effect of the volume of exposure has a negative effect in the propensity to vote (Hypothesis 3b). Extending the argument made by Bos *cum suis* (2010, 2011), we hypothesize that these effects of news media coverage on vote propensity are mediated by the perceived effectiveness of that new party (Hypothesis 4).

The Case of 50Plus in 2014

On 28 May 2014, both ‘50Plus/Baay-Timmerman’ and ‘50Plus/Klein’ were created. Both of them were parliamentary groups the Lower House of the Dutch Parliament. These groups were created as a result of a dispute between the two MPs representing the new elderly party ‘50Plus.’ The one MP, Martine Baay-Timmerman, was ousted from the party by the other, Norbert Klein. After this, the 50Plus board forced out Klein. Both groups claimed the name ‘50Plus,’ and the infighting dragged on for weeks.

To make matters worse, all this did not go unnoticed by the news media. In the country’s 9 main news outlets combined, no fewer than 282 news items mentioned 50Plus between December 2013 and June 2014, about 60% of the paragraphs having a clear negative tone compared to only 7% having a positive tone. Thus, Dutch news consumers were all but bombarded with bad news about 50Plus around that time. The news coverage of 50Plus is likely to have been particularly low on authoritativeness, and negative in terms of tone.
A clear example of a party split, such escalating internal conflict is arguably the worst that can happen to a new party. No matter how convinced about the policy issue positions the new party advocates, voters will be reluctant to support that party in such circumstances. Not only does the conflict scare off voters, it will also leave them confused about the party, eating away its perceived effectiveness.

Methods

To test our hypotheses, we make use of data from a six-wave panel survey from the Netherlands. The first four waves were collected in the context of the 2014 European Parliament Election Campaign study (wave 1: 13-26 December 2013; wave 2: 20-30 March 2014; wave 3: 17-28 April 2014; wave 4: 26 May-2 June 2014); the fifth wave (20-26 June 2014) was collected specifically to follow the public’s response to issues playing in the elderly party; the sixth wave (1-9 March 2016) was collected in the context of a national referendum. Fieldwork was administered by TNS NIPO Netherlands, which maintains a panel of 200,000 adults recruited through multiple strategies (e.g., telephone, face-to-face, and online). Membership in the panel is by invitation only to ensure sample quality and representativeness. For this study, a random sample was drawn from the database, with quotas set on age, gender, and education ($N_{wave1}=2,189$, AAPOR RR1 78.1%; $N_{wave2}=1,819$, re-contact rate 83.1%; $N_{wave3}=1,537$, re-contact rate 84.5%; $N_{wave4}=1,379$, re-contact rate 89.7%; $N_{wave5}=1,174$, re-contact rate 85.1%; $N_{wave6}=1,019$, re-contact rate 86.8%). The survey was done using Computer Assisted Web Interviewing (CAWI).

To account for the content respondents are exposed to, we combined the survey data with data from an automated content analysis of the eight most-read newspapers in the Netherlands (de Telegraaf, Algemeen Dagblad, de Volkskrant, NRC Handelsblad, NRC Next, Trouw, Metro and Sp!ts). This mix offers ideological variation, and includes both free and paid newspapers, and

1 The sixth wave is two years apart from the other waves, and as such some may comment that the large time period in between threatens the validity of our findings. However, we also ran our models excluding the sixth wave, and the results directly parallel the findings reported in this manuscript (results available from the authors).
both tabloids and quality newspapers. We also added data from the most widely used online-only news source nu.nl, which has an audience of more than two million unique news consumers per day.

The newspaper articles were collected through the database of LexisNexis; the articles from nu.nl were collected through their online archive. We collected all articles that mentioned 50Plus or one of its main politicians\(^2\) that were published between November 13, 2013 (two weeks prior to the fieldwork of wave 1 of the panel survey) and June 26, 2014 (the last day of the fieldwork of wave 5), and between February 17 and March 9, 2016 (two weeks prior to until the last day of the fieldwork of wave 6). The total number of articles was 428. The corpus of the material was analysed at the paragraph level (\(N=6,810\)).\(^3\)

This six-wave panel survey is linked to content data from news media, so that we have repeated measures of the dependent variable, the independent variables and the mediator, which allows an over-time analysis. In addition to this, we have a quasi-experimental setting. This is because the split of 50Plus occurred during the fieldwork of the fourth wave. We use this quasi-experimental setting to test our hypotheses, considering every respondent interviewed before the event ‘not having been assigned treatment’ and every respondent interviewed after ‘having been assigned treatment.’ For the ‘treated’ respondents, we also use the additional information of the extent to which they have been exposed to news about 50Plus after the event, so as to be surer of them receiving treatment.

Operationalisation

Propensity to vote 50Plus. Our dependent variable was measured in a block of questions asking for the propensity to vote for all 11 parties represented in the national parliament. The question was worded as follows: “We have a number of parties in our country, each of which would like to get your vote. How probable is it that you will ever vote for the following parties?

\(^2\) Search string used in both LexisNexis and nu.nl: ‘(50PLUS) OR (Jan Nagel) OR (Henk Krol) OR (Norbert Klein) OR (Martine Baay) OR (Toine Manders)’

\(^3\) Due to linking the media data to each individual by using the two weeks prior to each interview, data of a total number of 290 articles and 4,448 paragraphs were actually linked to the voter data.
Please specify your views on a 10-point scale where 1 means ‘not at all probable’ and 10 means ‘very probable.’” The answering options also included a ‘don’t know’ option (proportion used DK option: wave 1 = 6.9%; wave 2 = 5.8%; wave 3 = 5.6%; wave 4 = 5.3%; wave 5 = 3.5%; wave 6 = 7.1%). As we are interested in the propensity to vote for 50Plus, we only used the answer given for that party ($M_{wave1} = 2.95, SD_{wave1} = 2.55; M_{wave2} = 3.07, SD_{wave2} = 2.54; M_{wave3} = 2.95, SD_{wave3} = 2.59; M_{wave4} = 2.95, SD_{wave4} = 2.59; M_{wave5} = 2.60, SD_{wave5} = 2.26; M_{wave6} = 2.93, SD_{wave6} = 2.43$).

Volume of exposure. To assess the volume of exposure (i.e., mere exposure to 50Plus in the consumed news media), we first turned to the content analysis. We counted the number of paragraphs that mention either the party or one of its main politicians. This led to a daily count of the number of paragraphs for each news outlet. We linked this data to the survey by means of a self-reported news exposure measure. We asked the respondents how many days in a typical week they read each of the eight newspapers and the online news website. In a next step, comparable studies typically measure the coverage before the survey wave and link every respondent to this coverage before that wave. In the present paper, however, in the fourth wave a relevant event took place during the fieldwork. Thus, we choose to link each respondent to news media content data *at the daily level*. For this we use the following formula:

$$50PlusExposure_{r,w} = \sum_{i=1}^{9} \left(outletExposure_{i,r,w} \times \sum_{d=-13}^{0} \text{paragraphs}_{i,d} \right)$$

This formula calculates the exposure to 50Plus in wave w of respondent r by first taking the sum of the paragraphs in newspaper i of the 14 days d prior to the interview, multiplying this with number of days respondent r reports to read outlet i in wave w, and summing this for all 9 outlets. The value of the variable increases as a respondent more often uses a particular news outlet (that reports on 50Plus) and as the news outlet (that the respondent uses) increases its coverage of 50Plus ($M_{wave1} = 22.56, SD_{wave1} = 25.57; M_{wave2} = 36.62, SD_{wave2} = 38.14; M_{wave3} = 57.59, SD_{wave3} = 77.80; M_{wave4} = 100.43, SD_{wave4} = 120.57; M_{wave5} = 370.82, SD_{wave5} = 351.35; M_{wave6} = 13.46, SD_{wave6} = 15.07$).

4 This question was not asked in wave 5, and we used the responses in wave 4 as a proxy.
Because of the large range of volume of exposure (and as a result very small unstandardized coefficients indistinguishable from zero with two decimals) we rescaled the variable by dividing the scores with 1,000.

Tone of exposure. To assess the tone of exposure, we first needed to assess the tone of the news coverage. For this, we relied on an automated content analysis using the *SentiStrength* algorithm (Thelwall, Buckley, Paltoglou, Cai, & Kappas, 2010). The algorithm assigns a sentiment score to short texts by comparing them to a language-specific word list. In the list, words are assigned a score from very negative to very positive. In addition to searching for individual words, the algorithm also looks at particular combinations of words, such as negation words that reverse the sign of the sentiment (e.g., “not good”) and booster words that increases the absolute sentiment (“very good”). The algorithm has been validated by comparing algorithm results with manual coding (Thelwall, Buckley, & Paltoglou, 2012), also specifically in Dutch (Wojcieszak & Azrout, 2016). Using the algorithm, we counted the number of paragraphs with a positive tone and the number of paragraphs with a negative tone. We used this as input for creating both an exposure measure to positive paragraphs and to negative paragraphs, and created the tone measure using the following formula:

$$
toneExposure_{i,j} = \frac{\sum_{i=1}^{n} (outletExposure_{i,j} \times \sum_{j=1}^{3} PositiveParagraphs_{i,j}) - \sum_{i=1}^{n} (outletExposure_{i,j} \times \sum_{j=1}^{3} negativeParagraphs_{i,j})}{\sum_{i=1}^{n} (outletExposure_{i,j} \times \sum_{j=1}^{3} PositiveParagraphs_{i,j}) + \sum_{i=1}^{n} (outletExposure_{i,j} \times \sum_{j=1}^{3} negativeParagraphs_{i,j})}
$$

By subtracting the negative paragraph exposure (based on the number of negative paragraphs in the last 14 days in each outlet, weighted by the number of days the respondent uses each outlet) from the positive paragraph exposure, and dividing this by the sum of the two, we created a tone measure in which -1 implies that the respondent was exposed to only negative paragraphs (but independent on whether this was just 1 or 1000), +1 implies only exposure to positive paragraphs and 0 of positive and negative paragraphs are equally present or both absent ($M_{wave1}=-0.64, SD_{wave1}=0.43; M_{wave2}=-0.71, SD_{wave2}=0.43; M_{wave3}=-0.66, SD_{wave3}=0.44; M_{wave4}=-0.56, SD_{wave4}=0.35; M_{wave5}=-0.60, SD_{wave5}=0.35; M_{wave6}=-0.55, SD_{wave6}=0.48$).
Perceived effectiveness. The degree to which a respondent perceives the party as effective in achieving its goals was only measured in the third, fourth and fifth wave. The measurement consisted of four items: (1) To which degree is the organisation of 50Plus stable, according to you? (2) To what extent do you think can 50Plus get things done for its voters? (3) To which degree is 50Plus an efficient organisation, according to you? (4) To what extent do you expect 50Plus to achieve its goals? The respondents answered on a scale from 0 ‘not at all’ to 6 ‘to a very high degree’. In each wave the items loaded on one factor ($\text{Eigenvalue}_{\text{wave3}}=3.11$; $\text{Eigenvalue}_{\text{wave4}}=3.10$; $\text{Eigenvalue}_{\text{wave5}}=3.33$) and formed a reliable scale ($\text{Cronbach’s alpha}_{\text{wave3}}=.90$; $\text{Cronbach’s alpha}_{\text{wave4}}=.90$; $\text{Cronbach’s alpha}_{\text{wave5}}=.93$). We calculated the perceived effectiveness scale by taking the average of the four items ($M_{\text{wave3}}=3.34$, $SD_{\text{wave3}}=1.24$; $M_{\text{wave4}}=3.44$, $SD_{\text{wave4}}=1.25$; $M_{\text{wave5}}=2.64$, $SD_{\text{wave5}}=1.32$).

Data analysis

Our analysis consists of three parts. First, to test the over-time main effects of volume of exposure and tone of exposure, as well as the interaction between the two, on the propensity to vote, we make use of fixed-effects regression analysis, modelling the within-person change over all 6 waves rather than the between-person variation which is typical in observational studies. In doing so, individuals serve as their own controls because each person is compared with him- or herself at an earlier point in time. As a result, fixed-effects regression controls for the constant effects of all pre-existing variables, whether measured or unmeasured, as if they had been included in the model, offering the most stringent causal test in non-experimental settings (Allison, 2009). As this method of analysis requires at least two observations per respondent at different time points (to be able to assess change), and because we allow the respondents to answer they do not know on our propensity to vote for 50Plus question, the sample consists of respondents giving a valid answer in at least two waves: $N=1,713$, giving rise to 8,550 observations.
Second, we analyse the mediation by perceived effectiveness of the effects of volume of exposure and tone of exposure, and their interaction, again using fixed-effect regression analysis. As perceived effectiveness was only measured in wave 3, 4 and 5, we only use the variation over these three waves with a sample size of $N=1,451$, adding up to 3,890 observations. We test the mediation by following the method of Baron and Kenny (1986), first assessing the total effect of exposure on the propensity to vote score without controlling for perceived effectiveness (c-path), second assessing the effect of exposure on the mediator perceived effectiveness (a-path), and finally assessing the effect of perceived effectiveness (b-path) and exposure (c’-path) on the propensity to vote score simultaneously. A mediation exists if the a-path and the b-path yield significant effects and if the effect of the c’-path is significantly smaller than that of the c-path.

Third, turning to the quasi-experimental part of the analysis, an event during the fourth wave is used as a quasi-experimental factor. With the high visibility of the event and the clear negative tone, we test whether respondents that filled out the questionnaire after the event show a significantly lower propensity to vote score compared to those who responded before the event took place. In this model we control for the propensity to vote score from the previous wave so as to avoid selection bias. Adding perceived effectiveness and media exposure to the model allows for testing a moderated mediation.

Results

We start off with descriptive statistics of our news media content data. Figure 1 shows the visibility and tone of coverage of 50Plus and its politicians in all nine media outlets under study. Concerning visibility, note the clear increase during the party’s deep crisis at the time wave 4 and 5 were fielded. Regarding tone, across all outlets 50Plus was portrayed in a consistent negative way. The slightly less negative tone during wave 4 is mainly due to its good showing at the 2014 European Parliamentary elections, the party crisis occurring only in the last part of that wave’s fieldwork.
The results of our first set of fixed effects regression analyses can be seen in Table 1. Model 1 shows changes in propensity to vote for 50Plus compared to the first wave. Thus, we report a relative increase in wave 2, a decrease in wave 5, and an increase again in wave 6 – although not all the way back to the level of wave 1.

In Model 2 we test the fixed effects of volume of exposure (visibility). The negative coefficient implies that a within-subject increase in exposure leads to a within-subject decrease of her propensity to vote for 50Plus \((b=-0.25, SE=0.13, p=0.043)\). This does not bode well for Hypothesis 1, which claims that prominence increases vote propensity.

In Model 3 we add tone of exposure, which has no main effect \((b=-0.00, SE=0.05, p=0.941)\). We thus find no support for Hypothesis 2. We do observe that, while controlling for the tone of exposure, the negative effect of the volume of exposure persists.

In the next model, Model 4, we add the interaction between volume of exposure and tone of exposure. This interaction yields a significant positive effect \((b=1.10, SE=0.52, p=0.032)\). This implies that the more negative the tone of exposure, the stronger the effect of volume of exposure – i.e., the effect of exposure becomes more negative. Vice versa, as the tone turns more positive, an increase in volume exposure implies an increase in propensity to vote for 50Plus.

Figure 1. Visibility and tone of coverage of 50Plus at six time points in 2013-2016.
Table 1
Predicting propensity to vote for 50Plus (study 1)

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave 2</td>
<td>0.09*</td>
<td>0.09*</td>
<td>0.09*</td>
<td>0.09*</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Wave 3</td>
<td>-0.03</td>
<td>-0.03</td>
<td>-0.03</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.05)</td>
<td>(0.05)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Wave 4</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.05)</td>
<td>(0.05)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Wave 5</td>
<td>-0.39***</td>
<td>-0.31***</td>
<td>-0.31***</td>
<td>-0.30***</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.06)</td>
<td>(0.06)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>Wave 6</td>
<td>-0.13*</td>
<td>-0.13*</td>
<td>-0.13*</td>
<td>-0.13*</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.05)</td>
<td>(0.05)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Volume of exposure</td>
<td>-0.25*</td>
<td>-0.25*</td>
<td>-0.30*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
<td>(0.13)</td>
<td>(0.13)</td>
<td></td>
</tr>
<tr>
<td>Tone of exposure</td>
<td>-0.00</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume * tone of exposure</td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.52)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R^2

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>19.71</td>
<td>17.11</td>
<td>14.66</td>
<td>13.41</td>
</tr>
<tr>
<td>F-change</td>
<td>19.71***</td>
<td>4.08*</td>
<td>0.01</td>
<td>4.59*</td>
</tr>
<tr>
<td>N_{respondents}</td>
<td>1,713</td>
<td>1,713</td>
<td>1,713</td>
<td>1,713</td>
</tr>
<tr>
<td>N_{observations}</td>
<td>8,550</td>
<td>8,550</td>
<td>8,550</td>
<td>8,550</td>
</tr>
</tbody>
</table>

Note: Entries are unstandardized fixed-effects regression coefficients with standard errors within parentheses. Significance of the F-change is compared to the previous model. *** $p < .001$; ** $p < .01$; * $p < .05$; + $p < .1$ (two-tailed).

This is consistent with Hypotheses 3a and 3b, but to further examine the hypotheses we illustrate the interaction in Figure 2. The figure shows a significant negative marginal effect of volume of exposure when the tone of exposure turns more negative, which supports Hypothesis 3b. However, the figure also shows that when tone of exposure turns more positive, the marginal effect of volume of exposure also turns positive, but fails to reach conventional levels of significance. Although the lack of a significant marginal effect doesn’t bode well for Hypothesis 3a, the marginal effect is in the expected direction. And given the small numbers of respondents that are (on average) exposed to a positive tone, the lack of a significant result may not be that surprising and due to a lack of power at this end of the scale. Also, since most respondents are exposed to a negative tone regarding 50Plus and given our support for Hypothesis 3b, we can
understand the negative effect of volume of exposure: if the tone is primarily negative, an
increase in volume of exposure is likely to reduce the propensity to vote.

![Figure 2. Marginal effect of volume of exposure on propensity to vote for 50Plus for
different values of tone of exposure. The dashed lines denote a 95% confidence
interval.](image)

Turning to the last hypothesis, Hypothesis 4, we add perceived effectiveness to the models.
Since perceived effectiveness was only measured in wave 3, 4 and 5, the following analyses also
only apply to these three waves. We first note that both the main effect of tone of exposure
(b=0.09, SE=0.10, p=.175) and the interaction between volume and tone of exposure (b=0.20,
SE=0.66, p=.378) are not significant (we discuss the reason for not finding a significant
interaction with only these three waves in the discussion). We thus test the mediation hypothesis
only with volume of exposure as independent variable. Following the steps of Baron and Kenny
(1986) we first observe a significant total effect of volume of exposure on the propensity to vote
for 50Plus: b=-0.27, SE=0.13, p=.021. Second, we observe a significant direct effect of volume of
exposure on perceived effectiveness (b=-0.35, SE=0.08, p < .001) and a significant direct effect
of perceived effectiveness on the propensity to vote 50Plus (b=0.36, SE=0.03, p < .001). With a
significant indirect effect estimated at b=-0.13, (Sobel test: SE=0.03, p < .001) and a remaining
direct effect of volume of exposure on the propensity to vote for 50Plus of b=-0.14 (SE=0.13,
\(p = 0.135 \), we find a partial mediation which supports our hypothesis 4. The results of this mediation analysis are summarized in Figure 3.

\[\text{Figure 3. Model explaining PTV from volume of exposure mediated by perceived effectiveness, based on observational data from waves 3, 4 and 5. Entries are the unstandardized fixed effects coefficients with standard errors in parentheses. The models following the method of Baron and Kenny that are used to make this graph are presented in Appendix Table A1. The total effect of volume of exposure on propensity to vote is estimated at } b = -0.27, SE = 0.13, p = 0.021 \text{ (one-tailed). The indirect path is estimated at } b = -0.13, \text{ and a Sobel test shows this is significant (} SE = 0.03, p < 0.001). \]

*** \(p < 0.001 \); ** \(p < 0.01 \); * \(p < 0.05 \); + \(p < 0.1 \) (one-tailed)

We now turn to the quasi-experimental setting. We begin by comparing the experimental group to the control group on their average scores of propensity to vote for 50Plus in wave 3, just as a randomization check. The group that later on filled out the questionnaire in wave 4 before the crisis scored higher in wave 3 (\(M = 2.99, SD = 2.59 \)) than the group that later on filled out the questionnaire in wave 4 after the crisis (\(M = 2.69, SD = 2.52 \)), but this difference is not significant (\(M_{diff} = 0.30, SE = 0.20, p = 0.131 \)). Comparing the groups in wave 4, we see that the pre-crisis group scores a little higher compared to wave 3 (\(M = 3.12, SD = 2.64 \)) while the post-crisis group score lower in wave 4 compared to wave 3 (\(M = 2.19, SD = 2.23 \)), and more importantly in wave 4 the difference between the pre-crisis and post-crisis groups is significant (\(M_{diff} = 0.94, SE = 0.17, p < 0.001 \)). Although this doesn’t directly link to one particular hypothesis, it is supportive of the idea that the valence of a particular event influences the propensity to vote.
However, if we want to test whether this is indeed a media effect, we would expect the effect of the quasi-experimental treatment (i.e., whether the respondents filling in the questionnaire before and after the crisis differ) to be most pronounced among individuals that consume news. We thus test whether the quasi-experimental test is moderated by individuals’ self-reported exposure to television news ($b=-0.03$, $SE=0.02$, $p=.028$), newspapers ($b=-0.01$, $SE=0.03$, $p=.334$) and online news ($b=0.02$, $SE=0.02$, $p=.127$). Only the moderation by television exposure reaches a conventional level of statistical significance. The moderation is as one would expect, as the effect of the crisis is larger (more negative) when an individual is more likely to watch the news. With a remaining marginally significant conditional effect for individuals not watching the news ($b=-0.41$, $SE=0.28$, $p=.074$), we cannot rule out the existence of an effect among non-media-users, which may of course be likely due to “manipulation contamination” through other sources such as inter-personal communication. These findings are in line with Hypothesis 3b that a certain volume of exposure is required for a negative valenced event regarding a political party to negatively affect the propensity to vote for that party.

The quasi-experimental setting also allows us to test Hypothesis 4. We start with assessing the effect of the quasi-experimental conditions on the mediator, perceived effectiveness. Checking randomization again, we find no significant difference in perceived effectiveness in wave 3 ($M_{adj}=0.07$, $SE=0.09$, $p=.440$) between the pre-crisis group ($M=3.31$, $SD=1.25$) and the post-crisis group ($M=3.39$, $SD=1.29$). In wave 4, the post-crisis group ($M=3.11$, $SD=1.29$) scores lower than the pre-crisis group ($M=3.49$, $SD=1.20$), and this difference is significant ($M_{adj}=0.38$, $SE=0.09$, $p < .001$). Thus, we conclude that perceived effectiveness is negatively influenced by the crisis, just as propensity to vote is.

5 The day after the crisis was Ascension Day, a holiday on which in the Netherlands newspapers to not appear. Given that the crisis started during the day, so after most newspapers are printed and distributed, newspapers were only able to report about the issue two days later. And after two days, most readers were likely already exposed through other media sources or interpersonal communication. This may explain the lack of a moderated effect here.
To also test whether perceived effectiveness mediates the effect of the crisis on the propensity to vote we run a mediation analysis. This is an analysis similar to the one conducted in Study 2 above, still according to the method outlined in Baron and Kenny (1986). In Figure 4 we show the results of this mediation analysis and find: a significant total effect of the quasi-experimental factor on propensity to vote ($b = -0.72, SE = 0.15, p < .001$); a significant effect of the quasi-experimental factor on the mediator perceived effectiveness ($b = -0.64, SE = 0.08, p < .001$); a significant effect of the mediator on the propensity to vote ($b = 0.51, SE = 0.05, p < .001$); and a substantial decrease of the direct effect from the quasi-experimental factor on propensity to vote when controlling for the mediator c'-path ($b = -0.39, SE = 0.14, p = .004$). With the indirect estimated at $b = -0.32 (SE = 0.05, p < .001)$, we find a partial mediation which is in line with Hypothesis 4.

Figure 4. Model explaining PTV from volume of exposure mediated by perceived effectiveness, based on quasi-experimental data from wave 5. Entries are the unstandardized OLS regression coefficients with standard errors in parentheses. In the models leading to these results we also control for the propensity to vote in the preceding wave to capture any differences between the two quasi-experimental groups. The full models behind this graph are shown in Appendix Tables A2 and A3. The total effect of volume of exposure on propensity to vote is estimated at $b = -0.72, SE = 0.15, p < .001$ (one-tailed). The indirect path is estimated at $b = -0.32$, and a Sobel test shows this is significant $(SE = 0.05, p < .001)$.

*** $p < .001$; ** $p < .01$; * $p < .05$; + $p < .1$ (one-tailed)

Finally, we again test whether this is a media effect by analysing whether the indirect path is moderated by exposure to news. Given the non-significant moderations by exposure to...
newspapers and online news, we focus again on exposure to television news. The results are summarized in Figure 5.

![Figure 5](image)

Figure 5. Model explaining PTV from volume of exposure mediated by perceived effectiveness and moderated by television news exposure, based on quasi-experimental data from wave 5. Entries are the unstandardized OLS regression coefficients with standard errors in parentheses. The coefficients shown in the mediation part are conditional effects when raw television is at zero (no exposure). The full models behind this graph are shown in Appendix Tables A2 and A3. For main effects we refer to Figure 4.

*** p < .001; ** p < .01; * p < .05; + p < .1 (one-tailed)

We find that the path from the quasi-experimental factor on the mediator is indeed moderated by television exposure (b=-0.02, SE=0.01, p=.029). The negative coefficient of the interaction implies that the more individuals use television news (i.e., are likely to be exposed) the lower the perceived effectiveness is for the post-crisis group compared to the pre-crisis group (i.e., the larger the effect). However, just as for the main effect, we observe a significant conditional effect among individuals that do not consume television news (b=-0.38, SE=0.16, p=.014). Thus, again we find that individuals who do not use television news are also affected, likely through other news sources such as for instance personal communication. Finally, we notice that the direct effect of the experimental condition on propensity to vote for 50Plus
decreases while the interaction between the experimental condition and television exposure turns insignificant. This means that there is moderated mediation.

Conclusion

In this paper we have touched upon media portrayals of new parties. Much is still unknown about what aspects of such new parties’ images are important for their success or failure. We have addressed the question of whether a particular aspect, perceived effectiveness, mediates the effect of news media coverage of a new party on voters’ propensity to vote for that party. We have found that they partially do. In the process, we have corroborated earlier findings that visibility in news media coverage and tone of that coverage matter for a party’s electoral performance in rather intuitive ways.

Apart from arguing and demonstrating that perceived effectiveness plays this major role in new party success, we have gone beyond the relevant literature in at least four other ways. First, we have integrated existing political science concepts into a communication science model, which we applied to an electoral study. Second, we have compiled and tested a reliable scale of perceived effectiveness of a political party in voters’ eyes. Third, we applied a novel theoretical model of media effects to electoral behaviour. And fourth, we have employed three research designs in a complementary way. Furthermore, the sixth wave show us a (partial) recovery of the consequences of the party split and internal war after a year. This indicates that the effects we found are relatively short term. Only few previous studies have estimated the duration of such effects. But although the effects may not be permanent, even short term effects may be extremely consequential if for instance a crisis emerges shortly before the elections.

As the results of each design pointed in the same direction on most points, this makes us confident about our findings. However, although we established that visibility matters for the electoral performance of new parties, the direction was opposite of what one would expect. A party would need a certain level of visibility, because a non-visible party does virtually not exist and would not attract any voters. This would imply a positive effect of visibility, while our
analyses showed a negative coefficient. This illustrates that it is not just visibility that drives the effect: the tone of the coverage is also important. This is illustrated by our interaction, for which visibility has a positive effect if the tone of the coverage is positive, while there is a negative effect if the tone is negative. The reason why we find a negative main effect of visibility is thus the result of a mainly negative tone towards the party. The lack of a significant interaction between visibility and tone in our three-wave design, we expect, is due to not only a mainly negative tone but also a high correlation between visibility and tone (the more visible the party in this period the more negative the tone). These findings disavow the well-known saying that “any publicity is good publicity.”

One could argue, however, that our findings do not necessarily constitute a media effect but rather an effect of real-life events. Indeed, a party fighting among itself is a real-world event and knowledge of such an event would drive changes in both perceived effectiveness and the propensity to vote for that party. Yet, as Norris (2000) that media effects are most likely when citizens rely on news media as their main source of information, and following Page and Shapiro (1992), most citizens do not experience political events first-hand and thus need to rely on the news media to learn about politics. Our findings in the longitudinal analyses show that visibility and tone matter while at the same time visibility and tone differ between news outlets, which means that it is not just events that cause shifts in perceptions but also the way the media portray these events. This is corroborated in our experimental analysis, as the effect is moderated by media use.

Limitations of our study include studying just one party during one particular (albeit relatively long) time period. Furthermore, we cannot be entirely sure about the content of the news media beyond its tone. More specifically, the concept of “authoritativeness” used by Bos and colleagues (Bos & van der Brug, 2010; Bos et al., 2010, 2011) – and, to the extent applicable, “populism” – are not adequately measured. Future research should take relevant content characteristics into account.
Finally, one could argue that the effects and mechanisms we are interested in may not be unique to new parties. Indeed, an established party of which the perceived effectiveness reduces is also likely to see its electoral performance decrease. And real-life events (be it internal struggles or perhaps successful or unsuccessful participation in government) are likely to influence both. Yet, important here is that established parties have established reputations. And although reputations may change, new information from the media needs to compete with existing beliefs. Contrary to established parties, new parties are still in the process of establishing a reputation. Thus with citizens still learning about the new party, information from the media is much more likely to affect citizens’ perceptions of the new party. We thus expect that this mechanism is especially important for new parties. Thus, to be successful, new parties need not only make sure they are seen, but also guard their reputation.

References

Appendix

Table A1

Explaining perceived effectiveness and propensity to vote for 50Plus for mediation (study 2)

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DV=perceived effectiveness</td>
<td>DV=propensity to vote for 50Plus</td>
<td>DV=propensity to vote for 50Plus</td>
</tr>
<tr>
<td>Wave 4</td>
<td>-0.06** (0.03)</td>
<td>0.04 (0.05)</td>
<td>0.06* (0.04)</td>
</tr>
<tr>
<td>Wave 5</td>
<td>-0.71*** (0.03)</td>
<td>-0.28*** (0.06)</td>
<td>-0.02 (0.06)</td>
</tr>
<tr>
<td>Volume of exposure</td>
<td>-0.35*** (0.08)</td>
<td>-0.27* (0.13)</td>
<td>-0.14 (0.13)</td>
</tr>
<tr>
<td>Perceived effectiveness</td>
<td></td>
<td></td>
<td>0.36*** (0.03)</td>
</tr>
<tr>
<td>R^2</td>
<td>.214</td>
<td>.021</td>
<td>.064</td>
</tr>
<tr>
<td>F</td>
<td>352.607</td>
<td>28.017</td>
<td>66.739</td>
</tr>
<tr>
<td>F-change</td>
<td></td>
<td></td>
<td>179.06***</td>
</tr>
<tr>
<td>$N_{\text{respondents}}$</td>
<td>1,451</td>
<td>1,451</td>
<td>1,451</td>
</tr>
<tr>
<td>$N_{\text{observations}}$</td>
<td>3,890</td>
<td>3,890</td>
<td>3,890</td>
</tr>
</tbody>
</table>

Note: Entries are unstandardized fixed effects regression coefficients with standard errors in parentheses. Significance of the F-change is compared to the previous model. *** $p < .001$; ** $p < .01$; * $p < .05$; + $p < .1$ (one-tailed).
Table A2

Predicting propensity to vote 50Plus (study 3)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>propensity to vote for 50Plus (t-1)</td>
<td>0.67***</td>
<td>0.60***</td>
<td>0.66***</td>
<td>0.58***</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Quasi-experimental factor</td>
<td>-0.72***</td>
<td>-0.39**</td>
<td>-0.41*</td>
<td>-0.18</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.14)</td>
<td>(0.28)</td>
<td>(0.27)</td>
</tr>
<tr>
<td>TV exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TV exposure * Experimental factor</td>
<td></td>
<td>0.02**</td>
<td>0.02***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td></td>
</tr>
<tr>
<td>Newspaper exposure</td>
<td>0.00</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newspaper exposure * Experimental factor</td>
<td>-0.01</td>
<td>-0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Online news exposure</td>
<td>-0.01</td>
<td>-0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Online news exposure * experimental factor</td>
<td>0.02</td>
<td>0.03*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived effectiveness 50Plus</td>
<td>0.51***</td>
<td>0.52***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.05)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Entries are unstandardized OLS regression coefficients with standard errors in parentheses. ***p < .001; **p < .01; *p < .05; +p < .1 (one-tailed).
Table A3
Predicting perceived effectiveness (study 3)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propensity to vote for 50Plus (t-1)</td>
<td>0.14***</td>
<td>0.15***</td>
<td>0.15***</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Quasi-experimental factor</td>
<td>-0.64***</td>
<td>-0.66***</td>
<td>-0.38**</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.08)</td>
<td>(0.16)</td>
</tr>
<tr>
<td>TV exposure</td>
<td>-0.01**</td>
<td>-0.01*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td>TV exposure * Experimental factor</td>
<td></td>
<td></td>
<td>-0.02*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.01)</td>
</tr>
<tr>
<td>Newspaper exposure</td>
<td>-0.01*</td>
<td>-0.01*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td></td>
</tr>
<tr>
<td>Newspaper exposure * Experimental factor</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Online news exposure</td>
<td>-0.01*</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td>Online news exposure * experimental factor</td>
<td>-0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Entries are unstandardized OLS regression coefficients with standard errors in parentheses. *** $p < .001$; ** $p < .01$; * $p < .05$; + $p < .1$ (one-tailed).