A Syntax Directed Approach to Picture Semantics

Dejuan Wang*

Department of Interactive Systems,

CWI (Centrum voor Wiskunde en Informatica)
P.O. Box 94079, 1090 GB Amsterdam,
The Netherlands
e-mail: dejuan@cwi.nl

Henk Zeevat

Department of Computational Linguistics,
University of Amsterdam
Spuistraat 134, 1012 VB Amsterdam,
The Netherlands
e-mail: henk@mars.let.uva.nl

Abstract

If one constructs a visual language, it is necessary to have a methodology for constructing
the relationship between aspects of the pictures and the corresponding aspects of the applica-
tion domain. The various methods for specifying Visual Languages emphasize computational
aspects, where the semantics of the picture is embedded in the computational setting of the
specification, but they are not based on an understanding of the cognitive issues involved in
the semantics of pictures and in the use of the pictures for a better grasp of the application
domain and for manipulating the domain. We think that the analogy between a picture and
its meaning is what can help people to understand the meaning represented by the picture.
and that the match between the syntactic structures of the picture and what it represents
is an important element of analogy. We formalise the notion of matching in an approach to
picture semantics based on order-sorted algebra. Pictures are described in a well-structured
framework (order sorted signature) and so is the application domain. Constructing the re-
lationship between pictures and their meanings is guided by a formal notion of signature
morphism which, combining with the formal description of pictures, enforces a structural
match between pictures and their represented. We also discuss the various issues brought
out by this algebra approach.

*T did this work under the auspices of the ERCIM Computer Graphics Network funded under the CEC HCM
Programme.

1 Introduction

If one constructs a pictorial representation of some domain, it is necessary to have effective
methods for constructing the relationship between aspects of the pictures and the corre-
sponding aspects of the application domain. The use of a picture specification language [4]
— the normal method in a computational setting for specifying new classes of pictures ac-
cording to the requirements of the application domain— is not based on an understanding of
the cognitive issues involved in the semantics of pictures and in the use of the pictures for a
better grasp of the application domain and for manipulating the domain. There are no rules
to guide users in giving a proper interpretation to pictures. For instance, there is no standard
reasoning by which one can throw doubt on the wisdom of a specification like: John loves
Mary is represented by a straight line. It seems we want to enforce a structural relationship
between the picture and what it represents, so that the structure that is recognised by the
user in the picture reflects the structure of the application domain and that the mapping is
natural in that the user easily recognises its principles.

These issues are vital in generating visual programming environments [1] [7], but they
are not limited to this area or to visual representation on the computer as such. These are
but special cases of knowing objects by means of other objects which are employed as a
metaphor for them. Indurkhya’s theory on metaphor [5] explains the cognitive function of
a metaphor in two steps: first, the construction of a correspondence (an isomorphism or a
homomorphism) between one domain and the domain it is compared to in the metaphor. The
particular structure that this imposes on the first domain is the “concept” through which
we know the first domain, Second, the operations which are available on the second domain
construct through the correspondence similar operations on the domain that is known in the
metaphor. Such metaphors are important in science: e.g. the comparison of gas with balls
bouncing in vacuum, atoms compared to the solar system etc. What makes visual languages
on the computer have a special status is that here we have the possibility of effectively
manipulating the graphical object which can be connected to changes in the application
domain.

We present an approach to picture semantics and visual language interpretation, which is
naturally interpreted as a (partial) formalisation of the relation which a metaphor constructs
between a picture and what it represents. Our intuition is that there exists an analogy
between a picture and its meaning if the picture can help people in understanding the
meaning represented by it. The match between the syntactic structures of the picture and
what it represents is part of the analogy. Therefore looking for a well-structured framework
for picture description languages is the most basic step towards a syntax-directed approach
to picture semantics. We use order-sorted algebra [3] to specify graphical domains and
application domains and signature morphisms to express the relationship between pictures
and their meanings [2]. These methods are also useful in the study of how an interpreted
picture is used in visual reasoning [8].

An algebraic approach to picture description [6] and an algebraic approach to pictures
in the study of metaphors [5] provide inspiration for our approach. Our approach makes it
possible to implement systems to support visual reasoning (e.g. see GAR in [8]) and it is help-
ful for implementing systems which can generate visual reasoning and visual programming
environments.

For more details about reasoning with graphical representations, see [8], [9] and [10].

@ John

John| »lary|

(4) (5) (6)

()
&

Figure 1: Example graphical representations of John loves Mary.

2 Graphical representations as analogies

If a picture helps people to understand the subject matter represented by the picture, usually
there is an analogy between the picture and its subject matter. Understanding this analogy
depends on various aspects. Here we attempt to compare the structural similarities between
the different subject matters and the pictures that represent them. We believe that structural
similarity plays an important role in determining what is a good graphical representation.
Consider graphical representations of the English sentence John loves Mary. The pictures in
Figure 1 (1) (2) (3) represent this sentence properly, while the pictures in Figure 1 (4) (5)
(6) do not.

The sentence John loves Mary has three components, John, Mary and loves. John and
Mary are two objects of the same kind, i.e. persons. loves is a relational verb which relates
John and Mary, making John the subject and Mary the object of loves. The picture in
Figure 1 (1) has a similar structure, where boxes containing labels correspond to objects of
the same kind. The arrow represents the verb loves. The spatial relationship arrow-connect
between the two boxes corresponds to the love relation between John and Mary. The same
holds in the pictures in Figure 1 (2) (3) and we can see a certain match between the structure
of the sentence and the structures of the pictures. However, there is no proper structural
match between the sentence and the pictures in Figure 1 (4) (5) (6). The arrow in Figure 1 (4)
may represent the love relation but it can only represent the abstract concept love and not the
instance of love reported in the sentence. In this representation, only one of the components
of the sentence is represented. The picture in Figure 1 (5) can represent that John is in
love, but not that he is so with Mary: The spatial relation heart-thought-direction-and-eye-
direction starts from John but does not end with Mary. It looks more like a representation of
John loves somebody. In this example, although all three components are represented, there
is no match between the spatial relation and the relation in the sentence. Although the
picture in Figure 1 (6) matches the sentence in every detail, unfortunately it also suggests
that Mary loves John. Because the the spatial relation overlapping is symmetric, but the
relation love is not.

The above examples lead us to consider a syntax-directed approach to picture semantics.

In this approach, a graphical domain (the pictures) is structured and so is the application
domain (the subject matter) and with a mapping between the two structured domains.
In this paper, we first present a structure for building picture description languages. The
same structure can be assumed for the application domain description languages. Second,
we define an interpretation which associates pictures with their subject matter. Third, we
describe a syntax-directed approach to specify picture semantics and finally, we tentatively
discuss an extension of picture semantics to the interpretation of visual languages.

3 Picture description languages

In order to find syntactic similarities between pictures and the things they represent, we need,
first of all, to understand the syntactic structure of a picture used in visual communication.
This means that we have to look for a proper framework for picture description languages.
The framework should provide a useful kind of structure which reflects the various features
of the pictures that are used in visual communication.

We consider a picture description language consisting of a graphical signature and a
graphical theory. The graphical signature provides the symbols to generate expressions of
a picture description language and the graphical theory gives geometrical meanings to the
symbols in the signature.

Graphical signature

A graphical signature consists of a set of graphical sorts with a partial order over it, a set of
graphical function symbols and a set of graphical predicate symbols.

Graphical sorts (S): S is a set of graphical sorts. Graphical objects are divided into
many sorts, such as Circle, Line, Arrow etc. Furthermore, sorts are divided into two cate-
gories according to the way in which people use pictures in communication.

1. Normal sorts (Sy): Example normal sorts are Circle, Square etc. whose objects usually
represent objects in an application domain. For instance, a circle is used to represent a set.
2. Relational sorts (Sg): Example relational sorts are Arrow, Cross, Tick whose objects
usually represent the names of predicates and they often appear together with other graphi-
cal objects to form certain spatial relations to represent relations in the application domain.
For example, crosses often mean negation. As the logical connective = must be followed by a
predicate to form a well-formed formula which means that the predicate is not true, a cross
on a picture usually means that what is represented by the picture is not true. For instance,
if we put a cross on the arrow part in the picture in Figure 1 (1), that picture may represent
that John does not love Mary. If it is put on the box labeled with John, the picture may
represent that ¢t is not John who loves Mary. Objects in relational sorts may also be used
without forming any spatial relations with other objects together, e.g. just a cross. In such
cases, they represent abstract concepts, such as negation, direction.

The intersection between Sy and Sg is not necessarily empty. Some objects can be both
normal and relational. For instance, a line connecting two circles may represent a road be-
tween two cities or represent two persons who married to each other. The line is used as a
normal object in the former case and a relational object in the latter.

A partial order (<): There is a partial order relation over the graphical sorts, which char-
acterises the subsort relation between sorts. For instance, Square is a subsort of Rectangle

(Square < Rectangle) in the sense that all the properties satisfied by rectangles must be
satisfied by square. A clear subsort relation can be of help in understanding the geometrical
meanings of graphical objects and in giving a semantics to the pictures. For instance, in the
use of Venn Diagrams for set theory, both circles and closed curves represent sets. If the
subsort relation has been specified, we need only to point out that closed curves represent
sets, from which it naturally follows that circles represent sets since Circle is a subsort of
Closed-curve. It also helps in defining graphical functions and predicates (see below).

Graphical functions (F): Graphical functions are the possible operations over graphi-
cal objects. They are used to build the terms of the picture description language. We
classify graphical operations into four categories according to their features.

1. Constants (F¢): Constants (i.e. nullary function symbols) represent basic graphical ob-
jects. For instance, C' : Circle represent a circle.

2. Natural functions (Fy): Natural functions represent emergent graphical objects. For
instance, applying the function overlap : ClosedCurve x ClosedCurve — ClosedCurve
to two overlapping circles represented by two constants A and B, we obtain a new term
overlap(A, B) which represents the emergent closed curve.

overlap(A, B)

3. Artificial functions (Fa): By applying an artificial graphical function to a picture, new
graphical objects (which do not exist in the picture) may occur and other graphical objects
(which exist in the picture) may disappear. For instance, two forces a and b apply on an
object. We want to see the resultant force on the object. Suppose we use a box to represent
the object, and arrows to represent the forces. Then we need a graphical operation diagonal
which creates the diagonal line to represent the resultant force. diagonal is an artificial
graphical function, since the graphical object represented by the term diagonal(a,b) does

not exist in the original picture. diagonal(a,b)

v [

—

4. Attribute functions (Fa¢): The terms generated by attribute functions do not represent
graphical objects but their attributes. Example attribute functions are: length : Line —
Real, area : Circle — Real, colour : Colour Rectangle — Color, etc. which calculates the
length of a line, the area of a circle and finds the colour of a coloured rectangle.

Graphical predicates (P): Graphical predicates are used to generate formulas (atomic
formulas) which represent the spatial properties of (spatial relations between) graphical ob-
jects. For instance, an atomic formula in(a, A) (generated by applying in : Point x Circle
to point @ and circle A) represents that point a is inside circle A.

With the partial order relation over the sorts, a function symbol with principal type
$1 X .. X 8, — s also has s} x ... x s, — & as its type, if 5; > s} and s < s’. The
same happens with predicate symbols. For instance, if in the signature there is an attribute
function symbol area : Closure — Real, then the function area can be applied to closed

S | Sy | Rectangle, Polygon, Circle, ClosedCurve, Vector, TripVector...

Sp | Vector, Cross, Tick, ...

IA

Rectangle < Polygon, ...

Y Fo | Ri, Ra, ... : Rectangle, Py, P>, ... Polygon, ...

F | Fn | polygon : Rectangle x Rectangle — Polygon, ...

Fa | diagonal : Vector x Vector — TripVector, ...

Fay | areal : Polygon — Real, area2 : ClosedCurve — Real, ...

P ac : Rectangle x Vector x Rectangle, cv : Cross X Vector, ...

Figure 2: An example graphical signature.

curves, circles, polygons, triangles etc. whose sorts are subsorts of Closure, and returns their
areas.

The above gives the structure of a graphical signature. Following this structure, one can
build different graphical signatures. Figure 2 gives an example graphical signature.

Graphical theory (graphical inference)

A graphical signature presents the syntax of the picture description language. In the above
explanation of the picture description language, we pretended that there was a ‘common-
sense’ understanding of the graphical sorts, functions and predicates. The meanings of the
symbols and expressions in the language can be completely determined by the associated
graphical inference. Graphical inference is used to compute the graphical objects formed
by graphical operations such as overlap and to infer the properties of graphical objects in a
picture (e.g. whether a point is inside a circle). In practice, graphical inference is realised by
geometrical algorithms. In other words, graphical operations and predicates are implemented
by programs which give an (operational) semantics to graphical expressions in the language.
A theoretical characterisation of graphical inference can be obtained in different ways, for
instance by an axiomatic semantics, i.e. a logical characterisation of the general properties
of all pictures. For this, we assume that graphical inference is axiomatisable by a logical
(geometrical) theory over the graphical signature, called the graphical theory of the picture
description language. Let X be the graphical signature of a picture description language.
Then the graphical theory 7 is a set of logical formulas over ¥ which is consistent and closed
under the consequence relation of the underlying logical system and characterises graphical
inference.

4 Mappings between two structures

In the last section, we presented a structure for picture description languages. Now, we
assume that an application domain language has the same kind of structure, i.e. there is
an (application domain) signature and an (application domain) theory reflecting the natural
structure of the application domain. Order-sorted algebra’s are extremely general, so any
application domain can be formalised as one, but it is not a trivial assumption that the
application domain can be formalized in such a way that it (or a subalgebra) corresponds
with a given graphical algebra. Only when the application algebra (or a subalgebra of its

polynomial closure) has an isomorphic signature we can give a signature morphism[2]. A
signature morphism (an interpretation) maps normal sorts to normal sorts, relational sorts to
relational sorts and preserves the partial order relation, maps each kind of function (relation)
symbols to the correponding kind of function (relation) symbols and preserves the types of the
function (relation) symbols. See the illustration in Figure 3. Under a signature morphism,
we can then define whether the picture is a good representation of the application domain.

First of all we want that the picture is a representation of the application domain, i.e.
all the facts in the application domain that are expressible in the signature correspond to
pictorial facts in the picture. If this is not the case, the user will infer from the absence of
the pictorial fact to the absence of the application fact, e.g. because there is no object of
John’s love to the conclusion that there is no object of John’s love. (John’s love is ideal or
it is unknown who she is).

Second, we want that no facts can be read off from the picture that are not in the
application domain. This can even happen to representations. If we represent love by a
symmetric graphical relation, the pictur can correctly represent that John loves Mary, but
will ipso facto also represent that Mary loves John, which can be false.

Both properties define the notion of a good representation®.

Good representations may still be bad as they can be unnatural. There is good sense in
using natural similarities and conventional correspondences between the graphical domain
and the application domain to underlie the signature morphism. For example, size of rep-
resentation is a better choice for representing the size of the represented object than the
position on the x-axis. Such considerations fall outside the scope of our methods, but they
are extremely important, as these natural relations make it possible for the user to guess the
nature of the signature morphism without being explicitly informed of it.

A tentative formulation of what happens in metaphor interpretation could be that we
have two domains, two signatures and a signature morphism under which one domain is a
good representation of the other. Nature and convention are as important here as in the
interpretation of graphical representations as these are the basis for finding the structural
correspondence for the interpreting subjects.

Consider the picture in Figure 1 (1) and the sentence John loves Mary. A language for
describing this picture and a language for describing the sentence are necessary to have the
signatures in Figure 4.

Guided by the mapping structure in Figure 3, an interpretation between these two sig-
natures can be given as follows:

Box — Person, Arrow — Love By — John, By — Mary, A — Loves a-connect — love

Given an interpretation, it is extended to terms and formulas over the graphical signature.
For example, the above interpretation will be extended to formulas like: a-connect(Bi, Bs),
i.e. I(a-connect(Bj, By)) = Z(a-connect)(Z(B1),Z(B2)) = love(John,Mary).

An interpretation is usually only a partial mapping between signatures. A graphical
signature may have many sorts, functions and predicates. When we use pictures, however,
we may use only some parts of the signature, i.e. we move to a subsignature of the graphical
signature for the purpose at hand. Suppose we have in the graphical signature an attribute
function for calculating the area of a box. In representing the sentence John loves Mary, this
size is not relevant and should be ignored. The same holds for the categories in a signature.
In the John loves Mary example, the partial order and natural, artificial and attributes
functions are not used.

'In [8] also weaker notions of representation are considered.

Graphical Interpretation Application
.) ;, domain
signature 7 signature
Sk Sh
2 S S’ E’
Fc j-'é
F | I N | F
Fa , ffﬁl
Fai " Fl
P P!

Figure 3: An illustration of an interpretation.

¥ for the picture in Figure 1 (1). Y for John loves Mary
Sy | Box, ... Sy | Person, ...
Sgr | Arrow, ... Sy | Love, ...
< <
Fc | B1, Bs2: Box, A: Arrow, .. F{ | John, Mary : Person, Loves : Love, ..
P | a-connect: Box X Box, ... P’ | love : Person x Person, ...

Figure 4: a-connect means two boxes are connected by an arrow.

5 Syntax directed meaning specifications

The framework for picture description languages and the notion of interpretation presented
in the last two sections naturally leads to an approach to picture semantics. There are the
following components in this approach: a picture description language, an interface to help
the user to build up her application domain signature and an interface to guide the user to
choose graphical representations.

In the discussion, we can assume that the signature of the picture description language
is rich enough to satisfy all possible requirements. In practice, the graphical signature is
adapted to specific applications. The graphical theory of the picture description language
corresponds to a graphical inference engine which implements the graphical functions (e.g.
the computation of the overlap of two circles) and computes the truth-values of the graphical
predicates.

In order to construct the application domain signature, the system should help the user

to, first, classify object classes, functions and predicates in her application domain. If an
entity is a function (predicate), then it asks her to give its type (domain). For instance,
consider set theory as the application domain. Sets, elements are two classes of objects, N,
U, cardinality are functions over sets and €, C are predicates. The first classification fills §’,
F' and P’ in the domain signature ¥'. Then, the system should help her to classify different
kinds of sorts and functions. For instance, we classify N, U and cardinality into two kinds:
N and U are natural functions and cardinality is an attribute function.

Since the application domain signature is given, the user can choose graphical represen-
tations for the subject matter. Each time, the system provides the possible graphical entities
to the user when she looks for a graphical representation. For instance, if the user wants
a graphical representation for the sort Set, then the system shows all the normal graphical
sorts to her because Set is a normal sort in the application domain signature. Suppose
she selects Circle for Set and then Point for Flement. Now when she wants a graphical
representation for the membership relation €, the system, according to the previous inter-
pretation (Circle for Set and Point for Element) and the domain of € (€: Element x Set),
shows the existing graphical predicates whose domains are Point x Circle. Suppose the
user now wants the natural graphical function overlap to represent the set operation N. To
her surprise the system does not show overlap to her after she clicked N in the application
domain signature. The reason is that the type of N is: Set x Set — Set, according to her
previous interpretation (i.e. Circle represents Set), only those graphical functions whose
types are Circle x Circle — Circle can be used to represent N. The type of overlap is:
Closed-curve x Closed-curve — Closed-curve. According to the subsort relation, overlap
also has Circle x Circle — Closed-curve as its type, but Circle x Circle — Circle is not
its type. In such a case, the user may be allowed to tell the system that overlap is what
she wants. This prompts the system to compare the types of the graphical functions and to
diagnose the problem.

In the last section, an interpretation also included interpreting graphical constants to
constants (Fo — F¢). This is suitable for the understanding and the theoretical study of
picture semantics. However, in practice, the interpretation of graphical constants should be
postponed to the time when a particular picture is created for visual communication. A
graphical object (constant) is interpreted as an object by associating a label to the graphical
object. In the example John loves Mary, we should only interpret Boz to Person. When a
box is drawn on the screen, a label (John) can be given to the box, which means that this
box (whose sort is Boz which is interpreted as Person) is interpreted as the object John
(whose sort is Person).

For a predicate (e.g. love) in an application domain, the user can either choose a rela-
tional sort (e.g. Arrow) to represent the name of the predicate and then choose a graphical
predicate to represent the predicate (e.g. love), or directly choose a graphical predicate to
represent it. For the former, when the user wants to select a graphical predicate to represent
the predicate (e.g. love : Person X Person), the system will provide all the possible graphical
predicates which not only have the matched domains with the domain of the predicate in the
application domain, but also are related to the (graphical) relational sort selected before for
the name of the predicate (e.g. arrow-connect : Box x Boz), and for the latter, the system
just provides all the graphical predicates whose domains match the domain of the predicate
in the application domain.

6 Visual Languages

There is something unusual about the notion of semantics we have considered so far. This
comes out well when we compare it with natural language semantics: it is as if we are giving
a semantics for a single sentence rather than for the language as such. The problem with
semantics for pictures is that if we are speaking of pictures as such there is no uniform seman-
tics in terms of an application structure: the structure allows for many different graphical
representations with different meaning assignments. (We saw an example of that in figure 1).

Yet every single picture grasped in a particular way assigns meanings to a class of pic-
tures: those we can obtain by varying things in the picture without disturbing the signature
morphism. This variation supports intuitions of the form: if the picture had been so and so,
the application domain would have been so and so. A simple example: Let P be a represen-
tation of various people spread out over some space. We have labeled icons for the different
people and the position of the people icons on the screen reflects their spatial position in
some room. Once we grasp this, there are different variations we can study: we can move
the people about and we can add and remove people icons. The meaning is that some one
has shifted position, that more people have come into the room etc.

What remains constant within the variations is the interpretation of the room, the inter-
pretation of the person icon and the rule which assigns real people to labelled icon: it is the
person that has the label as a name.

What we obtain by considering variation is a class of pictures. These can be characterised
as the set of picture algebras that have the same sorts as the original picture and that may
share some of the individual constants. In addition they share the signature morphism to the
application domain. In this sense, a single interpreted diagram determines an interpreted
visual language, given a range of allowed variations. Each of the variations determines its
own signature and we can take the union of all of these. This gives us the signature with all
the infinitely many constants of each given sort. A variation is a (graphically interpreted)
algebra for a finite subsignature of this union. The interpretation of graphical sorts in the
application domain is inherited from the original diagram. The interpretation of constants
may be given by a rule (as in our example: an icon is a constant for the person whose name
is the label) but can also be underspecified. Here the constants have an indefinite meaning
and it may be that the same constant has a different interpretation in a variation.

The algebras can be given as the set of labelled person icons with an attribute function
Pos : Icon — Real x Real. They are all algebras with a signature ¥ that is a subset of a
signature Y, which contains all labelled icons and the Pos function.

The application domain is similarly given by the set of algebras which have different
people, a name function for people and an attribute function Pos’ giving the position of
the people in the room. These algebras also share part of their signature, and vary in the
objects.

The signature morphisms are constant over the interpretation of the room, the interpre-
tation of the Pos attribute function and in the interpretation of the icons as people and icon
labels as their names. They vary however in the set of icons over which they are defined and
in the values they give to the icons.

Formally, an interpreted visual language can be defined as a set of triples < D, F, ¢ >,
where D is a diagram, F’ an application structure and ¢ the signature morphism relating
the two. But this doesn not give a notion of meaning for the language. For this we require a
recipee that given a diagram can give us the depicted application structure and the morphism
relating the diagram and the structure.

10

A simple way to describe the language we are considering is as an infinite signature)
containing all possible people icons, a similar signature for the application domain and a
signature morphism ¢ between those. The expressions of the formal language are then the
algebras A with a finite subsignature ¥. We can restrict ¢ to the subsignature ¥ for a given
expression A. The application structure depicted by the expression A, is then the subalgebra
B with the signature (%), with ¢ restricted to ¥ the morphism linking A and B.

Let us consider one more example: diagrams for deterministic finite state machines (D-
FSMs). A D-FSM for an alfabet ¥ can be constructed as a structure

<T,R,...,R., , start, success >

where T is finite set, there is a relation R., for each character ¢; in ¥, and start and success
are predicates over T. We require that there is a single start element, that from each state
there is an R, successor and that every state can be reached from the start state through
the R.,’s.

Diagrams for these can be given as arrangements from character occurrences (from ¥ and
the characters * and <), arrows (pointed open curves) and circles. This gives us three sorts:

| S | charoc, circle, arrow. |

In addition we require some predicates. Arrows can be labelled by characters, circles can con-
tain a character and arrows can go from one circle to another. Moreover we need predicates
c(z) stating that z is an instance of character ¢ for each of the allowed characters.

label : charoc X arrow
contain : charoc X circle
P | connect: arrow X circle x circle
c: charoc

A particular diagram is given by a set of instances from the sorts, which give the full signature
of the diagram, which codes them a set of constants. A subdiagram of a given diagram is a
diagram with a subset of the constants.

The signature morphism is now based on the following subsignature of the polymorphic
closure of the diagram signature.

1. the circle constants

2. for each character from the alfabet, the predicate
AzAy3zTv(e(v) A label(v, z) A connect(z, z,y))

3. AzFv(< (v) A contain(v,z))

4. AzFv(*(v) A contain(v, z))

The signature morphism must map each circle constant to an element of the D-FSM, the
predicates in (2) to the relations R., the predicate in (3) to start and the predicate in (4) to
success. We can define the relation: diagram D denotes the D-FSM F by demanding that:
1. there exists a signature morphism ¢ between the signature given in 1-4 between D and F.
2. ¢ is one-one between the circle constants and the domain of F'. 3. there is no subdiagram
D’ of D that is also related by ¢ to F.

The first demand can be taken as an expression of the conventions of the drawing style.
The second makes sure that for every circle there is one state and for every state there is
one circle, a particularity of this kind of diagrams. The third demand makes sure there
are no uninterpreted elements in the diagrams like unlabelled arrows, free-floating character
occurrences, arrows that do not connect.

11

Notice that we have defined no constraints so far on the finite state diagrams: any
arrangements of elements of the appropriate sorts will be kandidates for interpretation. But
we get them back by demanding that a proper diagram denotes a D-FSM. This will enforce
the axioms of D-FSMs and the absence of loose elements.

There is another kind of constraint that does not directly follow from the semantics.
It is customary and reasonable to demand that arrows do not cross each other and the
circles, that the circles do not overlap, that the character occurrences are readable etc.
These constraints follow from the cognitive function of the diagram. A user building a D-
FSM by drawing a diagram must be able to read the result and must be able to show it
to others. Non-observance of such constraints will increase the difficulty for the user (and
for the machine that is presented with the graphics in e.g. bitmap format) for grasping the
structure of the diagram and thereby will inhibit the understanding. Crossing arrows will
allow the construction by the interpreter of different arrows, an arrow crossing a circle can
lead to different views concerning what it connects etc. This will thereby lead to different
interpretations of the same diagram and so inhibit the understanding of the visual metaphor
by the interpreter.

References

[1] B. Backlund and O. Hagsand. Generation of visual language-oriented design environ-
ments. Journal of Visual Language and Computing, 1:333-354, 1990.

[2] J. Goguen and R. Burstall. Introducing institutions. LNCS 164, 1984.

[3] J. Goguen and J. Meseguer. Order-sorted algebra 1: Equational deduction for multiple
inheritance, polymorphism, overloading and partial operations. Technical report SRI-
CSL-89-10, SRI International, 1989.

[4] Richard Helm and Kim Marriott. A declarative specification and semantics for visual
languages. Journal of Visual Language and Computing, 2:311-331, 1991.

[5] Bipin Indurkhya. Metaphor and Cognition, volume 13 of Studies in cognitive systems.
Kluwer academic publishers, 1992.

[6] L. A. Pineda. GRAFLOG: a Theory of Semantics for Graphics with Applications to
Human-Computer Interaction and CAD Systems. PhD thesis, University of Edinburgh,
1990.

[7] Susan M. Uskudarli. Generating visual editors for formally specified languages. In IEEE
Symposium on Visual Languages, pages 278-285, St. Louis, Missouri, Oct. 1994.

[8] Dejuan Wang. Studies on the formal semantics of pictures. PhD thesis, University of
Amsterdam, 1995. ILLC Dissertation Series 1995-4.

[9] Dejuan Wang and John Lee. Visual reasoning: its formal semantics and applications.
Journal of Visual Language and Computing, 4:327-356, 1993.

[10] Dejuan Wang, John Lee, and Henk Zeevat. Reasoning with diagrammatical repre-
sentations. In N. Hari. Narayanan Janice Glasgow and B. Chandrasekaran, editors,
Diagrammatic Reasoning: Cognitive and Computational Perspectives, pages 339-393.

A AAT press/The MIT press, 1995.

12

