
A Syntax Directed Approach to Picture SemanticsDejuan Wang�Department of Interactive Systems,CWI (Centrum voor Wiskunde en Informatica)P.O. Box 94079, 1090 GB Amsterdam,The Netherlandse-mail: dejuan@cwi.nlHenk ZeevatDepartment of Computational Linguistics,University of AmsterdamSpuistraat 134, 1012 VB Amsterdam,The Netherlandse-mail: henk@mars.let.uva.nlAbstractIf one constructs a visual language, it is necessary to have a methodology for constructingthe relationship between aspects of the pictures and the corresponding aspects of the applica-tion domain. The various methods for specifying Visual Languages emphasize computationalaspects, where the semantics of the picture is embedded in the computational setting of thespeci�cation, but they are not based on an understanding of the cognitive issues involved inthe semantics of pictures and in the use of the pictures for a better grasp of the applicationdomain and for manipulating the domain. We think that the analogy between a picture andits meaning is what can help people to understand the meaning represented by the picture.and that the match between the syntactic structures of the picture and what it representsis an important element of analogy. We formalise the notion of matching in an approach topicture semantics based on order-sorted algebra. Pictures are described in a well-structuredframework (order sorted signature) and so is the application domain. Constructing the re-lationship between pictures and their meanings is guided by a formal notion of signaturemorphism which, combining with the formal description of pictures, enforces a structuralmatch between pictures and their represented. We also discuss the various issues broughtout by this algebra approach.�I did this work under the auspices of the ERCIM Computer Graphics Network funded under the CEC HCMProgramme. 1

1 IntroductionIf one constructs a pictorial representation of some domain, it is necessary to have e�ectivemethods for constructing the relationship between aspects of the pictures and the corre-sponding aspects of the application domain. The use of a picture speci�cation language [4]| the normal method in a computational setting for specifying new classes of pictures ac-cording to the requirements of the application domain| is not based on an understanding ofthe cognitive issues involved in the semantics of pictures and in the use of the pictures for abetter grasp of the application domain and for manipulating the domain. There are no rulesto guide users in giving a proper interpretation to pictures. For instance, there is no standardreasoning by which one can throw doubt on the wisdom of a speci�cation like: John lovesMary is represented by a straight line. It seems we want to enforce a structural relationshipbetween the picture and what it represents, so that the structure that is recognised by theuser in the picture re
ects the structure of the application domain and that the mapping isnatural in that the user easily recognises its principles.These issues are vital in generating visual programming environments [1] [7], but theyare not limited to this area or to visual representation on the computer as such. These arebut special cases of knowing objects by means of other objects which are employed as ametaphor for them. Indurkhya's theory on metaphor [5] explains the cognitive function ofa metaphor in two steps: �rst, the construction of a correspondence (an isomorphism or ahomomorphism) between one domain and the domain it is compared to in the metaphor. Theparticular structure that this imposes on the �rst domain is the \concept" through whichwe know the �rst domain, Second, the operations which are available on the second domainconstruct through the correspondence similar operations on the domain that is known in themetaphor. Such metaphors are important in science: e.g. the comparison of gas with ballsbouncing in vacuum, atoms compared to the solar system etc. What makes visual languageson the computer have a special status is that here we have the possibility of e�ectivelymanipulating the graphical object which can be connected to changes in the applicationdomain.We present an approach to picture semantics and visual language interpretation, which isnaturally interpreted as a (partial) formalisation of the relation which a metaphor constructsbetween a picture and what it represents. Our intuition is that there exists an analogybetween a picture and its meaning if the picture can help people in understanding themeaning represented by it. The match between the syntactic structures of the picture andwhat it represents is part of the analogy. Therefore looking for a well-structured frameworkfor picture description languages is the most basic step towards a syntax-directed approachto picture semantics. We use order-sorted algebra [3] to specify graphical domains andapplication domains and signature morphisms to express the relationship between picturesand their meanings [2]. These methods are also useful in the study of how an interpretedpicture is used in visual reasoning [8].An algebraic approach to picture description [6] and an algebraic approach to picturesin the study of metaphors [5] provide inspiration for our approach. Our approach makes itpossible to implement systems to support visual reasoning (e.g. seeGAR in [8]) and it is help-ful for implementing systems which can generate visual reasoning and visual programmingenvironments.For more details about reasoning with graphical representations, see [8], [9] and [10].2

(1) (2) (3)-MaryJohn ~ uu ll,,�� ���� ��uu hh "!# "!# JohnMary(4) (5) (6)�����* ~ uu ll,,�� ���� �� uu hh "!# "!# MaryJohn��������Figure 1: Example graphical representations of John loves Mary.2 Graphical representations as analogiesIf a picture helps people to understand the subject matter represented by the picture, usuallythere is an analogy between the picture and its subject matter. Understanding this analogydepends on various aspects. Here we attempt to compare the structural similarities betweenthe di�erent subject matters and the pictures that represent them. We believe that structuralsimilarity plays an important role in determining what is a good graphical representation.Consider graphical representations of the English sentence John loves Mary. The pictures inFigure 1 (1) (2) (3) represent this sentence properly, while the pictures in Figure 1 (4) (5)(6) do not.The sentence John loves Mary has three components, John, Mary and loves. John andMary are two objects of the same kind, i.e. persons. loves is a relational verb which relatesJohn and Mary, making John the subject and Mary the object of loves. The picture inFigure 1 (1) has a similar structure, where boxes containing labels correspond to objects ofthe same kind. The arrow represents the verb loves. The spatial relationship arrow-connectbetween the two boxes corresponds to the love relation between John and Mary. The sameholds in the pictures in Figure 1 (2) (3) and we can see a certain match between the structureof the sentence and the structures of the pictures. However, there is no proper structuralmatch between the sentence and the pictures in Figure 1 (4) (5) (6). The arrow in Figure 1 (4)may represent the love relation but it can only represent the abstract concept love and not theinstance of love reported in the sentence. In this representation, only one of the componentsof the sentence is represented. The picture in Figure 1 (5) can represent that John is inlove, but not that he is so with Mary: The spatial relation heart-thought-direction-and-eye-direction starts from John but does not end with Mary. It looks more like a representation ofJohn loves somebody. In this example, although all three components are represented, thereis no match between the spatial relation and the relation in the sentence. Although thepicture in Figure 1 (6) matches the sentence in every detail, unfortunately it also suggeststhat Mary loves John. Because the the spatial relation overlapping is symmetric, but therelation love is not.The above examples lead us to consider a syntax-directed approach to picture semantics.3

In this approach, a graphical domain (the pictures) is structured and so is the applicationdomain (the subject matter) and with a mapping between the two structured domains.In this paper, we �rst present a structure for building picture description languages. Thesame structure can be assumed for the application domain description languages. Second,we de�ne an interpretation which associates pictures with their subject matter. Third, wedescribe a syntax-directed approach to specify picture semantics and �nally, we tentativelydiscuss an extension of picture semantics to the interpretation of visual languages.3 Picture description languagesIn order to �nd syntactic similarities between pictures and the things they represent, we need,�rst of all, to understand the syntactic structure of a picture used in visual communication.This means that we have to look for a proper framework for picture description languages.The framework should provide a useful kind of structure which re
ects the various featuresof the pictures that are used in visual communication.We consider a picture description language consisting of a graphical signature and agraphical theory. The graphical signature provides the symbols to generate expressions ofa picture description language and the graphical theory gives geometrical meanings to thesymbols in the signature.Graphical signatureA graphical signature consists of a set of graphical sorts with a partial order over it, a set ofgraphical function symbols and a set of graphical predicate symbols.Graphical sorts (S): S is a set of graphical sorts. Graphical objects are divided intomany sorts, such as Circle, Line, Arrow etc. Furthermore, sorts are divided into two cate-gories according to the way in which people use pictures in communication.1. Normal sorts (SN): Example normal sorts are Circle, Square etc. whose objects usuallyrepresent objects in an application domain. For instance, a circle is used to represent a set.2. Relational sorts (SR): Example relational sorts are Arrow, Cross, T ick whose objectsusually represent the names of predicates and they often appear together with other graphi-cal objects to form certain spatial relations to represent relations in the application domain.For example, crosses often mean negation. As the logical connective : must be followed by apredicate to form a well-formed formula which means that the predicate is not true, a crosson a picture usually means that what is represented by the picture is not true. For instance,if we put a cross on the arrow part in the picture in Figure 1 (1), that picture may representthat John does not love Mary. If it is put on the box labeled with John, the picture mayrepresent that it is not John who loves Mary. Objects in relational sorts may also be usedwithout forming any spatial relations with other objects together, e.g. just a cross. In suchcases, they represent abstract concepts, such as negation, direction.The intersection between SN and SR is not necessarily empty. Some objects can be bothnormal and relational. For instance, a line connecting two circles may represent a road be-tween two cities or represent two persons who married to each other. The line is used as anormal object in the former case and a relational object in the latter.A partial order (�): There is a partial order relation over the graphical sorts, which char-acterises the subsort relation between sorts. For instance, Square is a subsort of Rectangle4

(Square � Rectangle) in the sense that all the properties satis�ed by rectangles must besatis�ed by square. A clear subsort relation can be of help in understanding the geometricalmeanings of graphical objects and in giving a semantics to the pictures. For instance, in theuse of Venn Diagrams for set theory, both circles and closed curves represent sets. If thesubsort relation has been speci�ed, we need only to point out that closed curves representsets, from which it naturally follows that circles represent sets since Circle is a subsort ofClosed-curve. It also helps in de�ning graphical functions and predicates (see below).Graphical functions (F): Graphical functions are the possible operations over graphi-cal objects. They are used to build the terms of the picture description language. Weclassify graphical operations into four categories according to their features.1. Constants (FC): Constants (i.e. nullary function symbols) represent basic graphical ob-jects. For instance, C : Circle represent a circle.2. Natural functions (FN): Natural functions represent emergent graphical objects. Forinstance, applying the function overlap : ClosedCurve � ClosedCurve ! ClosedCurveto two overlapping circles represented by two constants A and B, we obtain a new termoverlap(A;B) which represents the emergent closed curve.?overlap(A;B)��������3. Arti�cial functions (FA): By applying an arti�cial graphical function to a picture, newgraphical objects (which do not exist in the picture) may occur and other graphical objects(which exist in the picture) may disappear. For instance, two forces a and b apply on anobject. We want to see the resultant force on the object. Suppose we use a box to representthe object, and arrows to represent the forces. Then we need a graphical operation diagonalwhich creates the diagonal line to represent the resultant force. diagonal is an arti�cialgraphical function, since the graphical object represented by the term diagonal(a; b) doesnot exist in the original picture. ?diagonal(a; b)����������1-����7����7a -b4. Attribute functions (FAt): The terms generated by attribute functions do not representgraphical objects but their attributes. Example attribute functions are: length : Line !Real, area : Circle ! Real, colour : ColourRectangle ! Color, etc. which calculates thelength of a line, the area of a circle and �nds the colour of a coloured rectangle.Graphical predicates (P): Graphical predicates are used to generate formulas (atomicformulas) which represent the spatial properties of (spatial relations between) graphical ob-jects. For instance, an atomic formula in(a;A) (generated by applying in : Point � Circleto point a and circle A) represents that point a is inside circle A.With the partial order relation over the sorts, a function symbol with principal types1 � ::: � sn ! s also has s01 � ::: � s0n ! s0 as its type, if si � s0i and s � s0. Thesame happens with predicate symbols. For instance, if in the signature there is an attributefunction symbol area : Closure ! Real, then the function area can be applied to closed5

S SN Rectangle; Polygon; Circle; ClosedCurve; V ector; TripV ector...SP V ector; Cross; T ick; :::� Rectangle � Polygon, ...� FC R1; R2; ::: : Rectangle; P1; P2; ::: Polygon, ...F FN polygon : Rectangle �Rectangle ! Polygon, ...FA diagonal : V ector � V ector ! TripV ector, ...FAt area1 : Polygon ! Real; area2 : ClosedCurve ! Real, ...P ac : Rectangle � V ector �Rectangle, cv : Cross � V ector, ...Figure 2: An example graphical signature.curves, circles, polygons, triangles etc. whose sorts are subsorts of Closure, and returns theirareas.The above gives the structure of a graphical signature. Following this structure, one canbuild di�erent graphical signatures. Figure 2 gives an example graphical signature.Graphical theory (graphical inference)A graphical signature presents the syntax of the picture description language. In the aboveexplanation of the picture description language, we pretended that there was a `common-sense' understanding of the graphical sorts, functions and predicates. The meanings of thesymbols and expressions in the language can be completely determined by the associatedgraphical inference. Graphical inference is used to compute the graphical objects formedby graphical operations such as overlap and to infer the properties of graphical objects in apicture (e.g. whether a point is inside a circle). In practice, graphical inference is realised bygeometrical algorithms. In other words, graphical operations and predicates are implementedby programs which give an (operational) semantics to graphical expressions in the language.A theoretical characterisation of graphical inference can be obtained in di�erent ways, forinstance by an axiomatic semantics, i.e. a logical characterisation of the general propertiesof all pictures. For this, we assume that graphical inference is axiomatisable by a logical(geometrical) theory over the graphical signature, called the graphical theory of the picturedescription language. Let � be the graphical signature of a picture description language.Then the graphical theory T is a set of logical formulas over � which is consistent and closedunder the consequence relation of the underlying logical system and characterises graphicalinference.4 Mappings between two structuresIn the last section, we presented a structure for picture description languages. Now, weassume that an application domain language has the same kind of structure, i.e. there isan (application domain) signature and an (application domain) theory re
ecting the naturalstructure of the application domain. Order-sorted algebra's are extremely general, so anyapplication domain can be formalised as one, but it is not a trivial assumption that theapplication domain can be formalized in such a way that it (or a subalgebra) correspondswith a given graphical algebra. Only when the application algebra (or a subalgebra of its6

polynomial closure) has an isomorphic signature we can give a signature morphism[2]. Asignature morphism (an interpretation) maps normal sorts to normal sorts, relational sorts torelational sorts and preserves the partial order relation, maps each kind of function (relation)symbols to the correponding kind of function (relation) symbols and preserves the types of thefunction (relation) symbols. See the illustration in Figure 3. Under a signature morphism,we can then de�ne whether the picture is a good representation of the application domain.First of all we want that the picture is a representation of the application domain, i.e.all the facts in the application domain that are expressible in the signature correspond topictorial facts in the picture. If this is not the case, the user will infer from the absence ofthe pictorial fact to the absence of the application fact, e.g. because there is no object ofJohn's love to the conclusion that there is no object of John's love. (John's love is ideal orit is unknown who she is).Second, we want that no facts can be read o� from the picture that are not in theapplication domain. This can even happen to representations. If we represent love by asymmetric graphical relation, the pictur can correctly represent that John loves Mary, butwill ipso facto also represent that Mary loves John, which can be false.Both properties de�ne the notion of a good representation1 .Good representations may still be bad as they can be unnatural. There is good sense inusing natural similarities and conventional correspondences between the graphical domainand the application domain to underlie the signature morphism. For example, size of rep-resentation is a better choice for representing the size of the represented object than theposition on the x-axis. Such considerations fall outside the scope of our methods, but theyare extremely important, as these natural relations make it possible for the user to guess thenature of the signature morphism without being explicitly informed of it.A tentative formulation of what happens in metaphor interpretation could be that wehave two domains, two signatures and a signature morphism under which one domain is agood representation of the other. Nature and convention are as important here as in theinterpretation of graphical representations as these are the basis for �nding the structuralcorrespondence for the interpreting subjects.Consider the picture in Figure 1 (1) and the sentence John loves Mary. A language fordescribing this picture and a language for describing the sentence are necessary to have thesignatures in Figure 4.Guided by the mapping structure in Figure 3, an interpretation between these two sig-natures can be given as follows:Box 7! Person, Arrow 7! Love B1 7! John, B2 7! Mary, A 7! Loves a-connect 7! loveGiven an interpretation, it is extended to terms and formulas over the graphical signature.For example, the above interpretation will be extended to formulas like: a-connect(B1; B2),i.e. I(a-connect(B1; B2)) = I(a-connect)(I(B1);I(B2)) = love(John,Mary).An interpretation is usually only a partial mapping between signatures. A graphicalsignature may have many sorts, functions and predicates. When we use pictures, however,we may use only some parts of the signature, i.e. we move to a subsignature of the graphicalsignature for the purpose at hand. Suppose we have in the graphical signature an attributefunction for calculating the area of a box. In representing the sentence John loves Mary, thissize is not relevant and should be ignored. The same holds for the categories in a signature.In the John loves Mary example, the partial order and natural, arti�cial and attributesfunctions are not used.1In [8] also weaker notions of representation are considered.7

P 0F 0F 0AtF 0AF 0NF 0C �0S 0RS 0N S 0 �0
P FAtFAFNFCF� SRSNS� signaturedomainApplicationInterpretationI �0�signatureGraphical

Figure 3: An illustration of an interpretation.� for the picture in Figure 1 (1). �0 for John loves MarySN Box, ...SR Arrow, ...�FC B1; B2: Box, A: Arrow,P a-connect: Box � Box, ... S 0N Person, ...S 0R Love, ...�0F 0C John, Mary : Person, Loves : Love,P 0 love : Person � Person, ...Figure 4: a-connect means two boxes are connected by an arrow.5 Syntax directed meaning speci�cationsThe framework for picture description languages and the notion of interpretation presentedin the last two sections naturally leads to an approach to picture semantics. There are thefollowing components in this approach: a picture description language, an interface to helpthe user to build up her application domain signature and an interface to guide the user tochoose graphical representations.In the discussion, we can assume that the signature of the picture description languageis rich enough to satisfy all possible requirements. In practice, the graphical signature isadapted to speci�c applications. The graphical theory of the picture description languagecorresponds to a graphical inference engine which implements the graphical functions (e.g.the computation of the overlap of two circles) and computes the truth-values of the graphicalpredicates.In order to construct the application domain signature, the system should help the user8

to, �rst, classify object classes, functions and predicates in her application domain. If anentity is a function (predicate), then it asks her to give its type (domain). For instance,consider set theory as the application domain. Sets, elements are two classes of objects, \,[, cardinality are functions over sets and 2, � are predicates. The �rst classi�cation �lls S 0,F 0 and P 0 in the domain signature �0. Then, the system should help her to classify di�erentkinds of sorts and functions. For instance, we classify \, [and cardinality into two kinds:\ and [are natural functions and cardinality is an attribute function.Since the application domain signature is given, the user can choose graphical represen-tations for the subject matter. Each time, the system provides the possible graphical entitiesto the user when she looks for a graphical representation. For instance, if the user wantsa graphical representation for the sort Set, then the system shows all the normal graphicalsorts to her because Set is a normal sort in the application domain signature. Supposeshe selects Circle for Set and then Point for Element. Now when she wants a graphicalrepresentation for the membership relation 2, the system, according to the previous inter-pretation (Circle for Set and Point for Element) and the domain of 2 (2: Element�Set),shows the existing graphical predicates whose domains are Point � Circle. Suppose theuser now wants the natural graphical function overlap to represent the set operation \. Toher surprise the system does not show overlap to her after she clicked \ in the applicationdomain signature. The reason is that the type of \ is: Set � Set ! Set, according to herprevious interpretation (i.e. Circle represents Set), only those graphical functions whosetypes are Circle � Circle ! Circle can be used to represent \. The type of overlap is:Closed-curve � Closed-curve ! Closed-curve. According to the subsort relation, overlapalso has Circle� Circle ! Closed-curve as its type, but Circle� Circle ! Circle is notits type. In such a case, the user may be allowed to tell the system that overlap is whatshe wants. This prompts the system to compare the types of the graphical functions and todiagnose the problem.In the last section, an interpretation also included interpreting graphical constants toconstants (FC ! F 0C). This is suitable for the understanding and the theoretical study ofpicture semantics. However, in practice, the interpretation of graphical constants should bepostponed to the time when a particular picture is created for visual communication. Agraphical object (constant) is interpreted as an object by associating a label to the graphicalobject. In the example John loves Mary, we should only interpret Box to Person. When abox is drawn on the screen, a label (John) can be given to the box, which means that thisbox (whose sort is Box which is interpreted as Person) is interpreted as the object John(whose sort is Person).For a predicate (e.g. love) in an application domain, the user can either choose a rela-tional sort (e.g. Arrow) to represent the name of the predicate and then choose a graphicalpredicate to represent the predicate (e.g. love), or directly choose a graphical predicate torepresent it. For the former, when the user wants to select a graphical predicate to representthe predicate (e.g. love : Person�Person), the system will provide all the possible graphicalpredicates which not only have the matched domains with the domain of the predicate in theapplication domain, but also are related to the (graphical) relational sort selected before forthe name of the predicate (e.g. arrow-connect : Box�Box), and for the latter, the systemjust provides all the graphical predicates whose domains match the domain of the predicatein the application domain. 9

6 Visual LanguagesThere is something unusual about the notion of semantics we have considered so far. Thiscomes out well when we compare it with natural language semantics: it is as if we are givinga semantics for a single sentence rather than for the language as such. The problem withsemantics for pictures is that if we are speaking of pictures as such there is no uniform seman-tics in terms of an application structure: the structure allows for many di�erent graphicalrepresentations with di�erent meaning assignments. (We saw an example of that in �gure 1).Yet every single picture grasped in a particular way assigns meanings to a class of pic-tures: those we can obtain by varying things in the picture without disturbing the signaturemorphism. This variation supports intuitions of the form: if the picture had been so and so,the application domain would have been so and so. A simple example: Let P be a represen-tation of various people spread out over some space. We have labeled icons for the di�erentpeople and the position of the people icons on the screen re
ects their spatial position insome room. Once we grasp this, there are di�erent variations we can study: we can movethe people about and we can add and remove people icons. The meaning is that some onehas shifted position, that more people have come into the room etc.What remains constant within the variations is the interpretation of the room, the inter-pretation of the person icon and the rule which assigns real people to labelled icon: it is theperson that has the label as a name.What we obtain by considering variation is a class of pictures. These can be characterisedas the set of picture algebras that have the same sorts as the original picture and that mayshare some of the individual constants. In addition they share the signature morphism to theapplication domain. In this sense, a single interpreted diagram determines an interpretedvisual language, given a range of allowed variations. Each of the variations determines itsown signature and we can take the union of all of these. This gives us the signature with allthe in�nitely many constants of each given sort. A variation is a (graphically interpreted)algebra for a �nite subsignature of this union. The interpretation of graphical sorts in theapplication domain is inherited from the original diagram. The interpretation of constantsmay be given by a rule (as in our example: an icon is a constant for the person whose nameis the label) but can also be underspeci�ed. Here the constants have an inde�nite meaningand it may be that the same constant has a di�erent interpretation in a variation.The algebras can be given as the set of labelled person icons with an attribute functionPos : Icon ! Real � Real. They are all algebras with a signature � that is a subset of asignatureP which contains all labelled icons and the Pos function.The application domain is similarly given by the set of algebras which have di�erentpeople, a name function for people and an attribute function Pos0 giving the position ofthe people in the room. These algebras also share part of their signature, and vary in theobjects.The signature morphisms are constant over the interpretation of the room, the interpre-tation of the Pos attribute function and in the interpretation of the icons as people and iconlabels as their names. They vary however in the set of icons over which they are de�ned andin the values they give to the icons.Formally, an interpreted visual language can be de�ned as a set of triples < D;F; ' >,where D is a diagram, F an application structure and ' the signature morphism relatingthe two. But this doesn not give a notion of meaning for the language. For this we require arecipee that given a diagram can give us the depicted application structure and the morphismrelating the diagram and the structure. 10

A simple way to describe the language we are considering is as an in�nite signature Pcontaining all possible people icons, a similar signature for the application domain and asignature morphism ' between those. The expressions of the formal language are then thealgebras A with a �nite subsignature �. We can restrict ' to the subsignature � for a givenexpression A. The application structure depicted by the expression A, is then the subalgebraB with the signature '(�), with ' restricted to � the morphism linking A and B.Let us consider one more example: diagrams for deterministic �nite state machines (D-FSMs). A D-FSM for an alfabet � can be constructed as a structure< T;Rc1 ; : : : ; Rcn ; start; success >where T is �nite set, there is a relation Rci for each character ci in �, and start and successare predicates over T . We require that there is a single start element, that from each statethere is an Rci successor and that every state can be reached from the start state throughthe Rci 's.Diagrams for these can be given as arrangements from character occurrences (from � andthe characters � and <), arrows (pointed open curves) and circles. This gives us three sorts:S charoc; circle; arrow.In addition we require some predicates. Arrows can be labelled by characters, circles can con-tain a character and arrows can go from one circle to another. Moreover we need predicatesc(x) stating that x is an instance of character c for each of the allowed characters.label : charoc� arrowcontain : charoc� circleP connect : arrow � circle� circlec : charocA particular diagram is given by a set of instances from the sorts, which give the full signatureof the diagram, which codes them a set of constants. A subdiagram of a given diagram is adiagram with a subset of the constants.The signature morphism is now based on the following subsignature of the polymorphicclosure of the diagram signature.1. the circle constants2. for each character from the alfabet, the predicate�x�y9z9v(c(v)^ label(v; z)^ connect(z; x; y))3. �x9v(< (v)^ contain(v; x))4. �x9v(�(v)^ contain(v; x))The signature morphism must map each circle constant to an element of the D-FSM, thepredicates in (2) to the relations Rc, the predicate in (3) to start and the predicate in (4) tosuccess. We can de�ne the relation: diagram D denotes the D-FSM F by demanding that:1. there exists a signature morphism ' between the signature given in 1-4 between D and F .2. ' is one-one between the circle constants and the domain of F . 3. there is no subdiagramD0 of D that is also related by ' to F .The �rst demand can be taken as an expression of the conventions of the drawing style.The second makes sure that for every circle there is one state and for every state there isone circle, a particularity of this kind of diagrams. The third demand makes sure thereare no uninterpreted elements in the diagrams like unlabelled arrows, free-
oating characteroccurrences, arrows that do not connect. 11

Notice that we have de�ned no constraints so far on the �nite state diagrams: anyarrangements of elements of the appropriate sorts will be kandidates for interpretation. Butwe get them back by demanding that a proper diagram denotes a D-FSM. This will enforcethe axioms of D-FSMs and the absence of loose elements.There is another kind of constraint that does not directly follow from the semantics.It is customary and reasonable to demand that arrows do not cross each other and thecircles, that the circles do not overlap, that the character occurrences are readable etc.These constraints follow from the cognitive function of the diagram. A user building a D-FSM by drawing a diagram must be able to read the result and must be able to show itto others. Non-observance of such constraints will increase the di�culty for the user (andfor the machine that is presented with the graphics in e.g. bitmap format) for grasping thestructure of the diagram and thereby will inhibit the understanding. Crossing arrows willallow the construction by the interpreter of di�erent arrows, an arrow crossing a circle canlead to di�erent views concerning what it connects etc. This will thereby lead to di�erentinterpretations of the same diagram and so inhibit the understanding of the visual metaphorby the interpreter.References[1] B. Backlund and O. Hagsand. Generation of visual language-oriented design environ-ments. Journal of Visual Language and Computing, 1:333{354, 1990.[2] J. Goguen and R. Burstall. Introducing institutions. LNCS 164, 1984.[3] J. Goguen and J. Meseguer. Order-sorted algebra 1: Equational deduction for multipleinheritance, polymorphism, overloading and partial operations. Technical report SRI-CSL-89-10, SRI International, 1989.[4] Richard Helm and Kim Marriott. A declarative speci�cation and semantics for visuallanguages. Journal of Visual Language and Computing, 2:311{331, 1991.[5] Bipin Indurkhya. Metaphor and Cognition, volume 13 of Studies in cognitive systems.Kluwer academic publishers, 1992.[6] L. A. Pineda. GRAFLOG: a Theory of Semantics for Graphics with Applications toHuman-Computer Interaction and CAD Systems. PhD thesis, University of Edinburgh,1990.[7] Susan M. Uskudarli. Generating visual editors for formally speci�ed languages. In IEEESymposium on Visual Languages, pages 278{285, St. Louis, Missouri, Oct. 1994.[8] Dejuan Wang. Studies on the formal semantics of pictures. PhD thesis, University ofAmsterdam, 1995. ILLC Dissertation Series 1995-4.[9] Dejuan Wang and John Lee. Visual reasoning: its formal semantics and applications.Journal of Visual Language and Computing, 4:327{356, 1993.[10] Dejuan Wang, John Lee, and Henk Zeevat. Reasoning with diagrammatical repre-sentations. In N. Hari. Narayanan Janice Glasgow and B. Chandrasekaran, editors,Diagrammatic Reasoning: Cognitive and Computational Perspectives, pages 339{393.AAAI press/The MIT press, 1995. 12

