For best experience please turn on javascript and use a modern browser!
Bekijk de site in het Nederlands

K3 surfaces are two-dimensional geometric objects studied in algebraic geometry. Although the number of distinct K3 surfaces is infinite and it is not possible to enumerate them all, it is possible to create a ‘moduli space’, a kind of catalogue in which every possible K3 surface occurs exactly once. Peterson studies the structure of the moduli space of K3 surfaces, focusing on the behaviour of modular forms, functions that contain a surprising amount of number-theoretic information.

Event details of Studying the moduli space of K3 surfaces
Date 19 June 2015
Time 12:00 -13:00
Locations Agnietenkapel, Agnietenkapel
Room Location, Location
Agnietenkapel

Room Location

Oudezijds Voorburgwal 229 - 231
1012 EZ Amsterdam

A. Peterson:  Modular Forms on the Moduli Space of Polarised K3 Surfaces.

Supervisor

Prof. G.B.M van der Geer

Co-supervisor

Prof. G. Farkas (Humboldt University, Berlin)

Agnietenkapel

Room Location

Oudezijds Voorburgwal 229 - 231
1012 EZ Amsterdam

Entrance

This event is open to the public.