For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Barberis, M. (2021). A multi-approach and multi-scale platform to model CD4+ T cells responding to infections. Npj Systems Biology and Applications.
Barberis, M. (2021). Integrative computational approach identifies drug targets in CD4+ T-cell-mediated immune disorders. Npj Systems Biology and Applications.
Barberis, M. (2021). Quantitative model of eukaryotic Cdk control through the Forkhead CONTROLLER. Npj Systems Biology and Applications.
Barberis, M. (2021). SysMod: the ISCB community for data-driven computational modelling and multi-scale analysis of biological systems. Bioinformatics.
Maissan, P., Mooij, E. J., & Barberis, M. (2021). Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review. Biology (Basel), 10(3), [194]. https://doi.org/10.3390/biology10030194[details]
Verstegen, N. J. M. C., Ubels, V., Westerhoff, H. V., van Ham, S. M., & Barberis, M. (2021). System-Level Scenarios for the Elucidation of T Cell-Mediated Germinal Center B Cell Differentiation. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2021.734282
2020
Abudukelimu, A., Barberis, M., Redegeld, F., Sahin, N., Sharma, R. P., & Westerhoff, H. V. (2020). Complex Stability and an Irrevertible Transition Reverted by Peptide and Fibroblasts in a Dynamic Model of Innate Immunity. Frontiers in Immunology, 10, [3091]. https://doi.org/10.3389/fimmu.2019.03091[details]
Barberis, M. (2020). Computer-Aided Whole-Cell Design: Taking a Holistic Approach by Integrating Synthetic With Systems Biology. Frontiers in Bioengineering and Biotechnology.
Barberis, M. (2020). Synthetic designs regulating cellular transitions: Fine-tuning of switches and oscillators. Current Opinion in Systems Biology.
Kolodkin, A. N., Sharma, R. P., Colangelo, A. M., Ignatenko, A., Martorana, F., Jennen, D., Briedé, J. J., Brady, N., Barberis, M., Mondeel, T. D. G. A., Papa, M., Kumar, V., Peters, B., Skupin, A., Alberghina, L., Balling, R., & Westerhoff, H. V. (2020). ROS networks: Designs, aging, Parkinson's disease and precision therapies. Npj Systems Biology and Applications, 6, [34]. https://doi.org/10.1038/s41540-020-00150-w[details]
Mondeel, T. D. G. A., Ivanov, O., Westerhoff, H. V., Liebermeister, W., & Barberis, M. (2020). Clb3-centered regulations are recurrent across distinct parameter regions in minimal autonomous cell cycle oscillator designs. Npj Systems Biology and Applications, 6, [8]. https://doi.org/10.1038/s41540-020-0125-0[details]
Barberis, M., & Mondeel, D. G. A. (2019). ChIP-exo analysis highlights Fkh1 and Fkh2 transcription factors as hubs that integrate multi-scale networks in budding yeast. Nucleic Acids Research.
Barberis, M., & van der Zee, L. (2019). Advanced Modeling of Cellular Proliferation: Toward a Multi-scale Framework Coupling Cell Cycle to Metabolism by Integrating Logical and Constraint-Based Models. Methods in Molecular Biology.
2018
Abudukelimu, A., Barberis, M., Redegeld, F. A., Sahin, N., & Westerhoff, H. V. (2018). Predictable Irreversible Switching Between Acute and Chronic Inflammation. Frontiers in Immunology, 9, [1596]. https://doi.org/10.3389/fimmu.2018.01596[details]
Barberis, M. (2018). A Mechanistic Computational Model Reveals That Plasticity of CD4+ T Cell Differentiation Is a Function of Cytokine Composition and Dosage. Frontiers in Physiology.
Barberis, M. (2018). Simulation of Stimulation: Cytokine Dosage and Cell Cycle Crosstalk Driving Timing-Dependent T Cell Differentiation. Frontiers in Physiology.
Barberis, M., & Mondeel, D. G. A. (2018). GEMMER: GEnome-wide tool for Multi-scale Modeling data Extraction and Representation for Saccharomyces cerevisiae. Bioinformatics.
2017
Abudukelimu, A., Mondeel, T. D. G. A., Barberis, M., & Westerhoff, H. V. (2017). Learning to read and write in evolution: from static pseudoenzymes and pseudosignalers to dynamic gear shifters. Biochemical Society Transactions, 45(3), 635-652. https://doi.org/10.1042/BST20160281[details]
Barberis, M., & Verbruggen, P. (2017). Quantitative Systems Biology to decipher design principles of a dynamic cell cycle network: the "Maximum Allowable mammalian Trade-Off-Weight" (MAmTOW). Npj Systems Biology and Applications, 3, [26]. https://doi.org/10.1038/s41540-017-0028-x[details]
Barberis, M., Todd, R. G., & van der Zee, L. (2017). Advances and challenges in logical modeling of cell cycle regulation: perspective for multi-scale, integrative yeast cell models. FEMS Yeast Research, 17(1), [fow103]. https://doi.org/10.1093/femsyr/fow103[details]
Linke, C., Chasapi, A., González-Novo, A., Al Sawad, I., Tognetti, S., Klipp, E., ... Barberis, M. (2017). A Clb/Cdk1-mediated regulation of Fkh2 synchronizes CLB expression in the budding yeast cell cycle. Npj Systems Biology and Applications, 3, [7]. https://doi.org/10.1038/s41540-017-0008-1[details]
Ostrow, A. Z., Kalhor, R., Gan, Y., Villwock, S. K., Linke, C., Barberis, M., ... Aparicio, O. M. (2017). Conserved forkhead dimerization motif controls DNA replication timing and spatial organization of chromosomes in S. cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 114(12), E2411-E2419. https://doi.org/10.1073/pnas.1612422114[details]
Zhang, Y., Kouril, T., Snoep, J. L., Siebers, B., Barberis, M., & Westerhoff, H. V. (2017). The Peculiar Glycolytic Pathway in Hyperthermophylic Archaea: Understanding Its Whims by Experimentation In Silico. International Journal of Molecular Sciences, 18(4), [876]. https://doi.org/10.3390/ijms18040876[details]
Westerhoff, H. V., Nakayama, S., Mondeel, T. D. G. A., & Barberis, M. (2015). Systems Pharmacology: An opinion on how to turn the impossible into grand challenges. Drug Discovery Today. Technologies, 15, 23-31. https://doi.org/10.1016/j.ddtec.2015.06.006[details]
2013
Linke, C., Klipp, E., Lehrach, H., Barberis, M., & Krobitsch, S. (2013). Fkh1 and Fkh2 associate with Sir2 to control CLB2 transcription under normal and oxidative stress conditions. Frontiers in Physiology, 4, [173]. https://doi.org/10.3389/fphys.2013.00173[details]
Supady, A., Klipp, E., & Barberis, M. (2013). A variable fork rate affects timing of origin firing and S phase dynamics in Saccharomyces cerevisiae. Journal of Biotechnology, 168(2), 174-184. https://doi.org/10.1016/j.jbiotec.2013.06.022[details]
2015
Naldi, A., Monteiro, P. T., Müssel, C., the Consortium for Logical Models and Tools, Kestler, H. A., Thieffry, D., Xenarios, I., Saez-Rodriguez, J., Helikar, T., Chaouiya, C., Albert, R., Barberis, M., Calzone, L., Chasapi, A., Cokelaer, T., Crespo, I., Dorier, J., Dräger, A., Hernandez, C., ... Zañudo, J. G. T. (2015). Cooperative development of logical modelling standards and tools with CoLoMoTo. Bioinformatics, 31(7), 1154-1159. https://doi.org/10.1093/bioinformatics/btv013[details]
The UvA website uses cookies and similar technologies to ensure the basic functionality of the site and for statistical and optimisation purposes. It also uses cookies to display content such as YouTube videos and for marketing purposes. This last category consists of tracking cookies: these make it possible for your online behaviour to be tracked. You consent to this by clicking on Accept. Also read our Privacy statement
Necessary
Cookies that are essential for the basic functioning of the website. These cookies are used to enable students and staff to log in to the site, for example.
Necessary & Optimalisation
Cookies that collect information about visitor behaviour anonymously to help make the website work more effectively.
Necessary & Optimalisation & Marketing
Cookies that make it possible to track visitors and show them personalised adverts. These are used by third-party advertisers to gather data about online behaviour. To watch Youtube videos you need to enable this category.