For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Lippe, P., Ren, P., Haned, H., Voorn, B., & de Rijke, M. (2022). Simultaneously Improving Utility and User Experience in Task-oriented Dialogue Systems. In eCom 2022: The SIGIR 2022 SIGIR Workshop on eCommerce ACM.
Wilms, M., Sileno, G., & Haned, H. (2022). PEBAM: A Profile-Based Evaluation Method for Bias Assessment on Mixed Datasets. In R. Bergmann, L. Malburg, S. C. Rodermund, & I. J. Timm (Eds.), KI 2022: Advances in Artificial Intelligence: 45th German Conference on AI, Trier, Germany, September 19–23, 2022 : proceedings (pp. 209-223). (Lecture Notes in Computer Science; Vol. 13404), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-031-15791-2_17[details]
Lucic, A., Haned, H., & de Rijke, M. (2020). Why Does My Model Fail? Contrastive Local Explanations for Retail Forecasting. In FAT* '20: proceedings of the 2020 Conference on Fairness, Accountability, and Transparency : January 27-30, 2020, Barcelona, Spain (pp. 90-98). The Association for Computing Machinery. https://doi.org/10.1145/3351095.3372824[details]
2019
Olteanu, A., Garcia-Gathright, J., de Rijke, M., Ekstrand, M. D., Roegiest, A., Lipani, A., Beutel, A., Lucic, A., Stoica, A-A., Das, A., Biega, A., Voorn, B., Hauff, C., Spina, D., Lewis, D., Oard, D. W., Yilmaz, E., Hasibi, F., Kazai, G., ... Kamishima, T. (2019). FACTS-IR: Fairness, Accountability, Confidentiality, Transparency, and Safety in Information Retrieval. SIGIR Forum, 53(2), 20-43. http://sigir.org/wp-content/uploads/2019/december/p020.pdf[details]
Lucic, A., Haned, H., & de Rijke, M. (2019). Contrastive Explanations for Large Errors in Retail Forecasting Predictions through Monte Carlo Simulations. In T. Miller, R. Weber, & D. Magazzeni (Eds.), Proceedings of the IJCAI 2019 Workshop on Explainable Artificial Intelligence (pp. 66-72). IJCAI. https://arxiv.org/abs/1908.00085v1[details]
Lucic, A., Haned, H., & de Rijke, M. (2019). Explaining Predictions from Tree-based Boosting Ensembles. In Proceedings of FACTS-IR 2019 ArXiv. https://arxiv.org/abs/1907.02582[details]
Lucic, A., Oosterhuis, H., Haned, H., & de Rijke, M. (2022). FOCUS: Flexible Optimizable Counterfactual Explanations for Tree Ensembles. Poster session presented at 36th AAAI Conference on Artificial Intelligence (AAAI-2022). https://doi.org/10.48550/arXiv.1911.12199
2022
Lucic, A. (2022). Explaining predictions from machine learning models: algorithms, users, and pedagogy. [details]
Lucic, A., Oosterhuis, H. R., Haned, H., & de Rijke, M. (2019). Actionable Interpretability through Optimizable Counterfactual Explanations for Tree Ensembles. (ArXiv e-prints).
The UvA website uses cookies and similar technologies to ensure the basic functionality of the site and for statistical and optimisation purposes. It also uses cookies to display content such as YouTube videos and for marketing purposes. This last category consists of tracking cookies: these make it possible for your online behaviour to be tracked. You consent to this by clicking on Accept. Also read our Privacy statement
Necessary
Cookies that are essential for the basic functioning of the website. These cookies are used to enable students and staff to log in to the site, for example.
Necessary & Optimalisation
Cookies that collect information about visitor behaviour anonymously to help make the website work more effectively.
Necessary & Optimalisation & Marketing
Cookies that make it possible to track visitors and show them personalised adverts. These are used by third-party advertisers to gather data about online behaviour. To watch Youtube videos you need to enable this category.