For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.

Contemporary issues require us to plan and implement a type of research that can look beyond differences. This seminar series aims to articulate the various dimensions of the problem and to come up with tentative methodological solutions.

Event details of One, many, thousands… big (online)
Date 11 February 2022
Time 13:00 -14:00
Organised by Lasse Gerrits , Sofia Pagliarin , Federica Russo

One, many, thousands… big

A line of division across research styles and disciplines is the number of cases or observations surveyed, as well as the number of variables used as explanans. Researchers can focus on single cases but these ‘objects’ can look rather different according to the selected empirical strategy (e.g., statistics about one country or interviews in one city). This session puts into questions the conventional separation between small/intermediate-n (qualitative) research and large-n (quantitative) research. In the light of finding a common ground for multi-data, comparative, multi- and mixed method research. What does ‘many’, or ‘enough’, cases/observations mean in empirical research? And is more always better? This session will also include a discussion on current research on big data, and if it will determine the extinction of qualitative research.


  • Rick Quax, University of Amsterdam
  • Arianna Betti, University of Amsterdam

About the series

The nature of contemporary society is such that many scholars call for interdisciplinary, multidisciplinary and transdisciplinary research. This is easier said than done. There are all sorts of technical problems – from data collection to congruence between different types of models – but there are deeper, more fundamental issues underneath those. Disciplinary differentiation and the solidifying into highly-specialised niches means that the scientific landscape has sacrificed holism for single-field and single-method expertise. Tell-tale signs include the convention of dichotomizing data into quantitative and qualitative data, the widely-held belief that quantitative research is superior to qualitative research, and an entrenchment of methods in different schools. While differentiation is inevitable, necessary and relevant, and has brought us many good things, it also created and maintained a sort of sectarism along the lines of epistemological and methodological cliques. Expertise has become a dogma to defend and to evangelise as the only possible way. Besides hampering interdisciplinary research, it also narrows opportunities for a healthy dialogue, debate and cooperation across different disciplines and expertise. Multi-data, comparative, multi- and mixed-method research, integrated methods is a sort of antidote to the extreme specialisation of disciplines and methods in the (social) sciences.

We are hence faced with the task to put the pieces together in the face of pressing contemporary issues requiring us to plan and implement a type of research that can look beyond differences. This requires a rediscovery of the fundamentals of each position and the attempt to mitigate the persistent incompatibilities that hinder modelling, data collection and (empirical) analysis to find a space for dialogue. This series "The Practice of Mixed Methods and Mixed Data Research" aims to articulate the various dimensions of the problem and to come up with tentative methodological solutions, that we explore in a series of seminars.

Scheduled sessions

Sessions take place on Fridays, 13:00-14.00 (online):

Each session will consist of a discussion kicked off by 2-3 panelists and will be followed by a Q&A session with a moderator.

Please register for each session separately, as we aim to keep the group to a manageable size, with a maximum of 25 participants.