Yanulevskaya, V., Uijlings, J., Geusebroek, J-M., Sebe, N., & Smeulders, A. (2013). A Proto-Object-Based Computational Model for Visual Saliency. Journal of Vision, 13(13), [27]. https://doi.org/10.1167/13.13.27[details]
Alnajar, F., Shan, C., Gevers, T., & Geusebroek, J. M. (2012). Learning-based encoding with soft assignment for age estimation under unconstrained imaging conditions. Image and Vision Computing, 30(12), 946-953. https://doi.org/10.1016/j.imavis.2012.07.009[details]
Balke, P., Geusebroek, J. M., & Markus, P. (2012). Brain2: machine learning to measure banknote fitness. In Optical Document Security III: 2012: conference proceedings [cd-rom] Sunbury-on-Thames: Reconnaissance international. [details]
2011
Geusebroek, J. M., Markus, P., & Balke, P. (2011). Learning banknote fitness for sorting. In Proceedings of the 2011 International Conference on Pattern Analysis and Intelligent Robotics: 28-29 June 2011, Putrajaya, Malaysia. - Vol. 1 (pp. 41-46). Piscataway, NJ: IEEE. https://doi.org/10.1109/ICPAIR.2011.5976909[details]
Yanulevskaya, V., Marsman, J. B., Cornelissen, F., & Geusebroek, J. M. (2011). An image statistics-based model for fixation prediction. Cognitive computation, 3(1), 94-104. https://doi.org/10.1007/s12559-010-9087-7[details]
Nedović, V., Smeulders, A. W. M., Redert, A., & Geusebroek, J. M. (2010). Stages As Models of Scene Geometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9), 1673-1687. https://doi.org/10.1109/TPAMI.2009.174[details]
van Gemert, J. C., Snoek, C. G. M., Veenman, C. J., Smeulders, A. W. M., & Geusebroek, J. M. (2010). Comparing Compact Codebooks for Visual Categorization. Computer Vision and Image Understanding, 114(4), 450-462. https://doi.org/10.1016/j.cviu.2009.08.004[details]
van Gemert, J. C., Veenman, C. J., Smeulders, A. W. M., & Geusebroek, J. M. (2010). Visual Word Ambiguity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(7), 1271-1283. https://doi.org/10.1109/TPAMI.2009.132[details]
Burghouts, G. J., & Geusebroek, J. M. (2009). Performance evaluation of local colour invariants. Computer Vision and Image Understanding, 113(1), 48-62. https://doi.org/10.1016/j.cviu.2008.07.003[details]
Lu, R., Gijsenij, A., Gevers, T., Nedović, V., Xu, D., & Geusebroek, J. M. (2009). Color constancy using 3D scene geometry. In 12th International Conference on Computer Vision (ICCV 2009) (pp. 1749-1756). Piscataway, NJ: IEEE. https://doi.org/10.1109/ICCV.2009.5459391[details]
Lu, R., Gijsenij, A., Gevers, T., van de Sande, K., Geusebroek, J. M., & Xu, D. (2009). Color constancy using stage classification. In 2009 IEEE International Conference on Image Processing, ICIP 2009: Proceedings: November 7-12, 2009, Cairo, Egypt (pp. 685-688). Piscataway, NJ: IEEE. https://doi.org/10.1109/ICIP.2009.5414083[details]
Snoek, C. G. M., van de Sande, K. E. A., de Rooij, O., Huurnink, B., Uijlings, J. R. R., van Liempt, M., ... Koelma, D. C. (2009). The MediaMill TRECVID 2009 semantic video search engine. In TRECVID 2009 Overview Papers and Slides Gaithersburg, MD: National Institute of Standards and Technology (NIST). [details]
Yanulevskaya, V., & Geusebroek, J. M. (2009). Significance of the Weibull distribution and its sub-models in natural image statistics. In A. Ranchordas, & H. Araújo (Eds.), VISAPP 2009: proceedings of the Fourth International Conference on Computer Vision Theory and Applications, Lisboa, Portugal, February 5-8, 2009 (Vol. 1, pp. 355-362). INSTICC Press. https://doi.org/10.5220/0001793203550362[details]
van Gemert, J. C., Veenman, C. J., & Geusebroek, J. M. (2009). Episode-constrained cross-validation in video concept retrieval. IEEE Transactions on Multimedia, 11(4), 780-785. https://doi.org/10.1109/TMM.2009.2017619[details]
2008
Nedović, V., Smeulders, A. W. M., Redert, A., & Geusebroek, J. M. (2008). Depth estimation via stage classification. In 3DTV Conference: The True Vision: Capture, Transmission and Display of 3D Video: 2008 (pp. 77-80). IEEE. https://doi.org/10.1109/3DTV.2008.4547812[details]
Snoek, C. G. M., van de Sande, K. E. A., de Rooij, O., Huurnink, B., van Gemert, J. C., Uijlings, J. R. R., He, J., Li, X., Everts, I., Nedovic, V., van Liempt, M., van Balen, R., Yan, F., Tahir, M. A., Mikolajczyk, K., Kittler, J., de Rijke, M., Geusebroek, J. M., Gevers, T., ... Koelma, D. C. (2008). The MediaMill TRECVID 2008 semantic video search engine. In TRECVID 2008: Proceedings of the 2008 TREC Video Retrieval Evaluation workshop (pp. 1-14). National Institute of Standards and Technology (NIST). http://www-nlpir.nist.gov/projects/tvpubs/tv8.papers/mediamill.pdf[details]
Yanulevskaya, V., van Gemert, J. C., Roth, K., Herbold, A. K., Sebe, N., & Geusebroek, J. M. (2008). Emotional valence categorization using holistic image features. In 15th IEEE International Conference on Image Processing: ICIP 2008 (pp. 101-104). IEEE. https://doi.org/10.1109/ICIP.2008.4711701[details]
van Gemert, J. C., Geusebroek, J-M., Veenman, C. J., & Smeulders, A. W. M. (2008). Kernel codebooks for scene categorization. In D. Forsyth, P. Torr, & A. Zisserman (Eds.), Computer Vision – ECCV 2008: 10th European Conference on Computer Vision, Marseille, France, October 12-18, 2008 : proceedings (Vol. III, pp. 696-709). (Lecture Notes in Computer Science; Vol. 5304). Berlin: Springer. https://doi.org/10.1007/978-3-540-88690-7_52[details]
Gevers, T., Gijsenij, A., van de Weijer, J., & Geusebroek, J. M. (2012). Color in computer vision: fundamentals and applications. (Wiley-IS&T series in imaging science and technology). Hoboken, NJ: Wiley-Blackwell. https://doi.org/10.1002/9781118350089[details]
2009
Snoek, C. G. M., van de Sande, K. E. A., de Rooij, O., Huurnink, B., Uijlings, J. R. R., van Liempt, M., ... Koelma, D. C. (2009). The MediaMill TRECVID 2009 semantic video search engine. In TRECVID 2009 working notes Gaithersburg, MD, USA: National Institute of Standards and Technology (NIST). [details]
De UvA maakt gebruik van cookies en daarmee vergelijkbare technieken voor het functioneren, meten en optimaliseren van de website. Ook worden er cookies geplaatst om bijv. YouTube filmpjes te kunnen tonen en voor marketingdoeleinden. Deze laatste categorie betreffen de tracking cookies. Uw internetgedrag kan worden gevolgd door middel van deze tracking cookies. Door op “Accepteer alle cookies” te klikken gaat u hiermee akkoord. Lees ook het UvA Privacy statement
Noodzakelijk
Cookies noodzakelijk voor het basisfunctioneren van de website. Deze cookies worden bijvoorbeeld ingezet om het inloggen voor studenten en medewerkers mogelijk te maken.
Noodzakelijk & Optimalisatie
Cookies die worden geplaatst om anoniem gegevens te verzamelen over het gebruik van de website om deze te verbeteren.
Noodzakelijk & Optimalisatie & Marketing
Cookies die in staat stellen bezoekers te volgen en van gepersonaliseerde advertenties te voorzien. Externe advertentienetwerken verzamelen individuele gegevens over internetgedrag. Selecteer deze categorie om YouTube video's te kunnen kijken.