Lucic, A., Bleeker, M., Bhargav, S., Forde, J. Z., Sinha, K., Dodge, J., Luccioni, S., & Stojnic, R. (2022). ACL tutorial proposal: Towards Reproducible Machine Learning Research in Natural Language Processing. In L. Benotti, N. Okazaki, Y. Scherrer, & M. Zampieri (Eds.), The 60th Annual Meeting of the Association for Computational Linguistics: ACL 2022 : tutorial abstracts : May 22-27, 2022 (pp. 7-11). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.acl-tutorials.2[details]
Lucic, A., Bleeker, M., Jullien, S., Bhargav, S., & de Rijke, M. (2022). Reproducibility as a Mechanism for Teaching Fairness, Accountability, Confidentiality, and Transparency in Artificial Intelligence. Proceedings of the AAAI Conference on Artificial Intelligence, 36(11), 12792-12800. https://doi.org/10.1609/aaai.v36i11.21558[details]
Lucic, A., Bleeker, M., de Rijke, M., Sinha, K., Jullien, S., & Stojnic, R. (2022). Towards Reproducible Machine Learning Research in Information Retrieval. In SIGIR '22: proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval : July 11-15, 2022, Madrid, Spain The Association for Computing Machinery.
2021
Lucic, A., ter Hoeve, M., Tolomei, G., de Rijke, M., & Silvestri, F. (2021). CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks. In DLG-KDD’21: Deep Learning on Graphs, August 14–18, 2021, Online Article 3 ACM. https://doi.org/10.1145/1122445.1122456[details]
Lucic, A., Haned, H., & de Rijke, M. (2020). Why Does My Model Fail? Contrastive Local Explanations for Retail Forecasting. In FAT* '20: proceedings of the 2020 Conference on Fairness, Accountability, and Transparency : January 27-30, 2020, Barcelona, Spain (pp. 90-98). The Association for Computing Machinery. https://doi.org/10.1145/3351095.3372824[details]
2019
Olteanu, A., Garcia-Gathright, J., de Rijke, M., Ekstrand, M. D., Roegiest, A., Lipani, A., Beutel, A., Lucic, A., Stoica, A.-A., Das, A., Biega, A., Voorn, B., Hauff, C., Spina, D., Lewis, D., Oard, D. W., Yilmaz, E., Hasibi, F., Kazai, G., ... Kamishima, T. (2019). FACTS-IR: Fairness, Accountability, Confidentiality, Transparency, and Safety in Information Retrieval. SIGIR Forum, 53(2), 20-43. http://sigir.org/wp-content/uploads/2019/december/p020.pdf[details]
Lucic, A., ter Hoeve, M., Tolomei, G., de Rijke, M., & Silvestri, F. (2021). CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks. (v1 ed.) ArXiv. https://doi.org/10.48550/arXiv.2102.03322[details]
Lucic, A., Haned, H., & de Rijke, M. (2019). Contrastive Explanations for Large Errors in Retail Forecasting Predictions through Monte Carlo Simulations. In T. Miller, R. Weber, & D. Magazzeni (Eds.), Proceedings of the IJCAI 2019 Workshop on Explainable Artificial Intelligence (pp. 66-72). IJCAI. https://arxiv.org/abs/1908.00085v1[details]
Lucic, A., Haned, H., & de Rijke, M. (2019). Explaining Predictions from Tree-based Boosting Ensembles. In Proceedings of FACTS-IR 2019 ArXiv. https://arxiv.org/abs/1907.02582[details]
Lucic, A., Oosterhuis, H., Haned, H., & de Rijke, M. (2022). FOCUS: Flexible Optimizable Counterfactual Explanations for Tree Ensembles. Poster session presented at 36th AAAI Conference on Artificial Intelligence (AAAI-2022). https://doi.org/10.48550/arXiv.1911.12199
2021
Lucic, A., Srikumar, M., Bhatt, U., Xiang, A., Taly, A., Liao, Q. V., & de Rijke, M. (2021). A Multistakeholder Approach Towards Evaluating AI Transparency Mechanisms. Paper presented at HCXAI2021: ACM CHI Workshop Human-Centered Perspectives in Explainable AI, Yokohama, Japan. https://arxiv.org/abs/2103.14976[details]
Lucic, A. (2022). Explaining predictions from machine learning models: algorithms, users, and pedagogy. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Lucic, A., Oosterhuis, H., Haned, H., & de Rijke, M. (2019). Actionable Interpretability through Optimizable Counterfactual Explanations for Tree Ensembles. (v1 ed.) ArXiv. [details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.