Bolsinova, M., Maris, G., Hofman, A. D., van der Maas, H. L. J., & Brinkhuis, M. J. S. (2022). Urnings: A new method for tracking dynamically changing parameters in paired comparison systems. Journal of the Royal Statistical Society. Series C: Applied Statistics, 71(1), 91-118. https://doi.org/10.1111/rssc.12523[details]
Boehm, U., Marsman, M., van der Maas, H. L. J., & Maris, G. (2021). An Attention-Based Diffusion Model for Psychometric Analyses. Psychometrika, 86(4), 938-972. https://doi.org/10.1007/s11336-021-09783-0[details]
Hofman, A. D., Brinkhuis, M. J. S., Bolsinova, M., Klaiber, J., Maris, G., & van der Maas, H. L. J. (2020). Tracking with (Un)Certainty. Journal of Intelligence, 8(1), [10]. https://doi.org/10.3390/jintelligence8010010[details]
Kruis, J., Maris, G., Marsman, M., Bolsinova, M., & van der Maas, H. L. J. (2020). Deviations of rational choice: an integrative explanation of the endowment and several context effects. Scientific Reports, 10, [16226]. https://doi.org/10.1038/s41598-020-73181-2[details]
Savi, A. O., van der Maas, H. L. J., Maris, G. K. J., & Marsman, M. (2020). Mitochondrial functioning ≠ general intelligence. Journal of Intelligence, 8(2), [20]. https://doi.org/10.3390/jintelligence8020020
2019
Marsman, M., Sigurdardóttir, H., Bolsinova, M., & Maris, G. (2019). Characterizing the Manifest Probability Distributions of Three Latent Trait Models for Accuracy and Response Time. Psychometrika, 84(3), 870-891. https://doi.org/10.1007/s11336-019-09668-3[details]
Savi, A. O., Marsman, M., van der Maas, H. L. J., & Maris, G. K. J. (2019). The Wiring of Intelligence. Perspectives on Psychological Science, 14(6), 1034-1061. https://doi.org/10.1177/1745691619866447[details]
Waldorp, L., Marsman, M., & Maris, G. (2019). Logistic regression and Ising networks: Prediction and estimation when violating lasso assumptions. Behaviormetrika, 46(1), 49-72. https://doi.org/10.1007/s41237-018-0061-0[details]
Brinkhuis, M. J. S., Savi, O. A., Hofman, A. D., Coomans, F., van der Maas, H. L. J., & Maris, G. (2018). Learning as It Happens: A Decade of Analyzing and Shaping a Large-Scale Online Learning System. Journal of Learning Analytics, 5(2), 29-46. https://doi.org/10.18608/jla.2018.52.3[details]
Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., van Bork, R., Waldorp, L. J., van der Maas, H. L. J., & Maris, G. (2018). An introduction to network psychometrics: Relating ising network models to item response theory models. Multivariate Behavioral Research, 53(1), 15-35. https://doi.org/10.1080/00273171.2017.1379379[details]
Savi, A. O., Ruijs, N. M., Maris, G. K. J., & van der Maas, H. L. J. (2018). Delaying access to a problem-skipping option increases effortful practice: Application of an A/B test in large-scale online learning. Computers and Education, 119, 84-94. https://doi.org/10.1016/j.compedu.2017.12.008[details]
Marsman, M., Waldorp, L., & Maris, G. (2017). A note on large-scale logistic prediction: Using an approximate graphical model to deal with collinearity and missing data. Behaviormetrika, 44(2), 513-534. https://doi.org/10.1007/s41237-017-0024-x[details]
Zwitser, R. J., Glaser, S. S. F., & Maris, G. (2017). Monitoring Countries in a Changing World: A New Look at DIF in International Surveys. Psychometrika, 82(1), 210-231. https://doi.org/10.1007/s11336-016-9543-8[details]
2016
Bolsinova, M., & Maris, G. (2016). A test for conditional independence between response time and accuracy. British Journal of Mathematical & Statistical Psychology, 69(1), 62-79. https://doi.org/10.1111/bmsp.12059[details]
Bolsinova, M., Maris, G., & Hoijtink, H. (2016). Unmixing Rasch scales: How to score an educational test. Annals of Applied Statistics, 10(2), 925-945. https://doi.org/10.1214/16-AOAS919[details]
Coomans, F., Hofman, A., Brinkhuis, M., van der Maas, H. L. J., & Maris, G. (2016). Distinguishing fast and slow processes in accuracy: Response time data. PLoS ONE, 11(5), [e0155149]. https://doi.org/10.1371/journal.pone.0155149[details]
Zwitser, R. J., & Maris, G. (2016). Ordering individuals with sum scores: the introduction of the nonparametric Rasch model. Psychometrika, 81(1), 39-59. https://doi.org/10.1007/s11336-015-9481-x[details]
Brinkhuis, M. J. S., Bakker, M., & Maris, G. (2015). Filtering data for detecting differential development. Journal of Educational Measurement, 52(3), 319-338. https://doi.org/10.1111/jedm.12078[details]
Bechger, T. M., Blanca, M. J., & Maris, G. (2014). The analysis of multivariate group differences using common principal components. Structural Equation Modeling, 21(4), 577-587. https://doi.org/10.1080/10705511.2014.919827[details]
Zhang, S., Lee, M. D., Vandekerckhove, J., Maris, G., & Wagenmakers, E-J. (2014). Time-varying boundaries for diffusion models of decision making and response time. Frontiers in Psychology, 5, [1364]. https://doi.org/10.3389/fpsyg.2014.01364[details]
Maris, G., & van der Maas, H. (2012). Speed-accuracy response models: scoring rules based on response time and accuracy. Psychometrika, 77(4), 615-633. https://doi.org/10.1007/s11336-012-9288-y[details]
van der Maas, H. L. J., Molenaar, D., Maris, G., Kievit, R. A., & Borsboom, D. (2011). Cognitive psychology meets psychometric theory: on the relation between process models for decision making and latent variable models for individual differences. Psychological Review, 118(2), 339-356. https://doi.org/10.1037/a0022749[details]
2010
Bechger, T. M., Maris, G., & Hsiao, Y. P. (2010). Detecting halo effects in performance-based examinations. Applied Psychological Measurement, 34(8), 607-619. https://doi.org/10.1177/0146621610367897[details]
Epskamp, S., Maris, G., Waldorp, L. J., & Borsboom, D. (2018). Network Psychometrics. In P. Irwing, T. Booth, & D. J. Hughes (Eds.), The Wiley Handbook of Psychometric Testing: A Multidisciplinary Reference on Survey, Scale and Test Development (Vol. 2, pp. 953-986). Chichester: Wiley. https://doi.org/10.1002/9781118489772.ch30[details]
2009
Maris, G. (2009). Standard setting from a psychometric point of view. In N. Figueras, & J. Noijons (Eds.), Linking to the CEFR levels: research perspectives (pp. 59-65). Arnhem: CITO - Council of Europe - EALTA. [details]
Ou, L., Hofman, A. D., Simmering, V., Berger, T., Maris, G. K. J., & van der Maas, H. L. J. (2019). Modeling person-specific development of math skills in continuous time: New evidence for mutualism. Paper presented at The 12th International Conference on Educational Data Mining, .
Tijdschriftredactie
Maris, G. K. J. (editor) (2015). Psychometrika (Journal).
Spreker
Zwitser, R. (speaker), Glaser, S. S. F. (speaker) & Maris, G. K. J. (speaker) (18-7-2017). On the Difference between Modeling DIF and Correcting for DIF, 82nd Annual Meeting of the Psychometric Society, Zurich.
Partchev, I. (speaker), Zwitser, R. (speaker), van der Palm, D. (speaker), Maris, G. K. J. (speaker) & Bechger, T. M. (speaker) (9-2-2017). Introducing dexter: An R Package for Managing and Analysing Test Data., International Workshop on Psychometric Computing, Vienna.
Zwitser, R. (speaker) & Maris, G. K. J. (speaker) (27-7-2016). Differential Item Function in educational surveys. It’s there and it should be there!, VII European Congress of Methodology, Palma de Mallorca.
Maris, G. K. J. (invited speaker) (12-12-2014). What is the question to which IRT is the answer?, 24th IOPS Winter Conference, Amsterdam.
Zwitser, R. (speaker), Glaser, S. S. F. (speaker) & Maris, G. K. J. (speaker) (20-11-2014). Monitoring Countries in a Changing World. A New Look at DIF in International Surveys., Presentation at the Research Center for Examinations and Certification (RCEC) workshop 2014, Enschede.
Zwitser, R. (speaker) & Maris, G. K. J. (speaker) (22-7-2013). Ordering Individuals with Sum Scores: the Introduction of the Nonparametric Rasch Model, International Meeting of the Psychometric Society, Arnhem.
Zwitser, R. (speaker), Béguin, A. (speaker) & Maris, G. K. J. (speaker) (8-7-2011). Complex Decision Rules and Misclassification: Who Should Take a Retest?, International Meeting of the Psychometric Society, Hong Kong.
Zwitser, R. (speaker) & Maris, G. K. J. (speaker) (7-6-2010). CML Estimation in Multistage Testing, International Association for Computerized Adaptive Testing, Arnhem.
De UvA maakt gebruik van cookies en daarmee vergelijkbare technieken voor het functioneren, meten en optimaliseren van de website. Ook worden er cookies geplaatst om bijv. YouTube filmpjes te kunnen tonen en voor marketingdoeleinden. Deze laatste categorie betreffen de tracking cookies. Uw internetgedrag kan worden gevolgd door middel van deze tracking cookies. Door op “Accepteer alle cookies” te klikken gaat u hiermee akkoord. Lees ook het UvA Privacy statement
Noodzakelijk
Cookies noodzakelijk voor het basisfunctioneren van de website. Deze cookies worden bijvoorbeeld ingezet om het inloggen voor studenten en medewerkers mogelijk te maken.
Noodzakelijk & Optimalisatie
Cookies die worden geplaatst om anoniem gegevens te verzamelen over het gebruik van de website om deze te verbeteren.
Noodzakelijk & Optimalisatie & Marketing
Cookies die in staat stellen bezoekers te volgen en van gepersonaliseerde advertenties te voorzien. Externe advertentienetwerken verzamelen individuele gegevens over internetgedrag. Selecteer deze categorie om YouTube video's te kunnen kijken.