Voor de beste ervaring schakelt u JavaScript in en gebruikt u een moderne browser!
Je gebruikt een niet-ondersteunde browser. Deze site kan er anders uitzien dan je verwacht.

Dr. B. (Bahareh) Afshari

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

  • Science Park 105
  • Kamernummer: F1.09
  • Postbus 94242
    1090 GE Amsterdam
Social media
  • About me

    I obtained a PhD in Mathematics from the University of Leeds. Since then I have held research and teaching positions at the University of Edinburgh (Laboratory for Foundations of Computer Science), University of Oxford (Department of Computer Science and Keble College), Vienna University of Technology (Institute of Discrete Mathematics and Geometry), and University of Gothenburg (Department of Computer Science and Engineering and Faculty of Philosophy, Linguistics and Theory of Science). I obtained my Docent in Logic in 2019.

    I am Assistant Professor (Universitair Docent) and MacGillavry Fellow at UvA, and Associate Professor (Docent in Logic) at GU. 

    See my interview with the MacGillavry Fellowship programme for a  general persepective of my research.

    You can read more about the research groups I am affiliated to in the following links.

  • Research

    My research lies at the intersection of mathematics and computer science with a focus on interactions between expressibility, complexity, and deductive strength in fixpoint logics. I employ techniques from proof theory, notably proof transformations, cut-elimination and tableaux, to gain insight into the behaviour of fixpoint constructions.

    Other topics that I have worked on previously and/or are currently pursuing include relative computability, reverse mathematics, ordinal analysis, computational content of proofs, automata theory and games.

    Current research projects

    1. Foundations for team semantics: Meaning in an enriched framework (2023-2026).  Funded by the Swedish Research Council.
    2. Cyclic Proofs for Modal and Higher-order Logic (2021-2025). Funded by the Dutch Research Council (NWO).
    3. Proof theory of fixed point modal logic (2019–2023). Funded by the Faculty of Science of the University of Amsterdam.
    4. Modal mu-calculus: A study in descriptive complexity (2017–2021). Funded by a Starting Grant from the Swedish Research Council.

    PhD students

    Research seminars

    LLAMA Seminars

  • Teaching

    I teach the following courses. If you have any enquiries you are welcome to contact me directly.

  • Publications

    Below you will see my publications since 2019. For earlier articles please visit my GU homepage.

  • Publicaties


    • Afshari, B., Leigh, G., & Menéndez Turata, G. (2023). A Cyclic Proof System for Full Computation Tree Logic. In Computer Science Logic 2023 [5] (Leibniz International Proceedings in Informatics; Vol. 252). Schloss Dagstuhl -- Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CSL.2023.5


    • Afshari, B., & Leigh, G. E. (2022). Lyndon interpolation for modal μ-calculus. In A. Özgün, & Y. Zinova (Eds.), Language, Logic, and Computation: 13th International Tbilisi Symposium, TbiLLC 2019, Batumi, Georgia, September 16-20, 2019 : revised selected papers (pp. 197–213). (Lecture Notes in Computer Science; Vol. 13206), (FoLLI Publications on Logic, Language and Information). Springer. https://doi.org/10.1007/978-3-030-98479-3_10 [details]
    • Afshari, B., & Wehr, D. (2022). Abstract Cyclic Proofs. In A. Ciabattoni, E. Pimentel, & R. J. G. B. de Queiroz (Eds.), Logic, Language, Information, and Computation: 28th International Workshop, WoLLIC 2022, Iași, Romania, September 20–23, 2022 : proceedings (pp. 309–325). (Lecture Notes in Computer Science; Vol. 13468), (FoLLI Publications on Logic, Language and Information). Springer. https://doi.org/10.1007/978-3-031-15298-6_20 [details]
    • Afshari, B., & Whr, D. (2022). Exact bounds for acyclic higher-order recursion schemes. Information and Computation, 290, 1-15. https://doi.org/10.1016/j.ic.2022.104982
    • Afshari, B., Enqvist, S., & Leigh, G. (2022). Cyclic proofs for the first-order mu-calculus. Logic Journal of the IGPL. https://doi.org/10.1093/jigpal/jzac053


    • Afshari, B., Leigh, G. E., & Menéndez Turata, G. (2021). Uniform Interpolation from Cyclic Proofs: The Case of Modal Mu-Calculus. In A. Das, & S. Negri (Eds.), Automated Reasoning with Analytic Tableaux and Related Methods: 30th International Conference, TABLEAUX 2021, Birmingham, UK, September 6–9, 2021 : proceedings (pp. 335-353). (Lecture Notes in Computer Science; Vol. 12842), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-030-86059-2_20 [details]



    • Afshari, B., & Leigh, G. E. (2019). Direct interpolation for modal mu-calculus. In Proceedings of the Tbilisi Symposia on Language, Logic and Computation https://wollic2019.sites.uu.nl/programme-monday/
    • Afshari, B., Jäger, G., & Leigh, G. E. (2019). An infinitary treatment of full mu-calculus. In R. Iemhoff, M. Moortgat, & R. de Queiroz (Eds.), Logic, Language, Information, and Computation: 26th International Workshop, WoLLIC 2019, Utrecht, The Netherlands, July 2-5, 2019 : proceedings (pp. 17-34). (Lecture Notes in Computer Science; Vol. 11541), (FoLLI Publications on Logic, Language and Information). Springer. https://doi.org/10.1007/978-3-662-59533-6_2 [details]
    This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications. Log in to Personal Page Publication Selection tool to manage the visibility of your publications on this list.
  • Nevenwerkzaamheden
    Geen nevenwerkzaamheden