Kurtz, J., Birbil, Ş. İ., & den Hertog, D. (2026). Counterfactual explanations for linear optimization. European Journal of Operational Research, 329(1), 24-41. Advance online publication. https://doi.org/10.1016/j.ejor.2025.06.016
2025
Boon, C. T., Durak, E., & Birbil, S. I. (2025). Towards a better understanding of misfit through explainable AI techniques. In J. Billsberry, & D. L. Talbot (Eds.), Employee Misfit (1 ed., Vol. 1, pp. 223–245). Springer. https://doi.org/10.1007/978-981-96-8208-9_12
Cinà, G., Röber, T. E., Goedhart, R., & Birbil, Ş. İ. (2025). Why we do need explainable AI for healthcare. Diagnostic and Prognostic Research, 9, Article 24. https://doi.org/10.1186/s41512-025-00209-4
Kuipers, M. F., Konus, U., Brundel, B. J. J. M., & Birbil, S. I. (2025). Communication strategies driving online health community patient awareness and engagement investigated within atrial fibrillation context. npj digital medicine, 8, Article 446. https://doi.org/10.1038/s41746-025-01854-1
Maragno, D., Wiberg, H., Bertsimas, D., Birbil, S. I., den Hertog, D., & Fajemisin, A. O. (2025). Mixed-Integer Optimization with Constraint Learning. Operations Research, 73(2), 1011-1028. https://doi.org/10.1287/opre.2021.0707
Mohammadi, A., Schoonhoven, M., Vogels, L. F. O., & Birbil, S. I. (2025). Scalable Bayesian Structure Learning for Gaussian Graphical Models Using Marginal Pseudo-Likelihood. Bayesian Analysis, 1. Advance online publication. https://doi.org/10.1214/25-BA1561
Otto, D., Kurtz, J., & Birbil, S. I. (2025). Coherent Local Explanations for Mathematical Optimization. Manuscript submitted for publication.
Röber, T. E., Goedhart, R., & Birbil, S. I. (2025). Clinicians’ Voice: Fundamental Considerations for XAI in Healthcare. In Proceedings of the 10th Machine Learning for Healthcare Conference: Proceedings of Machine Learning Research (PMLR) (Vol. 298) https://proceedings.mlr.press/v298/rober25a.html
Röber, T. E., Lumadjeng, A., Akyuz, H., & Birbil, S. I. (2025). Rule Generation for Classification: Scalability, Interpretability, and Fairness. Computers & Operations Research, 183, Article 107163. https://doi.org/10.1016/j.cor.2025.107163
Vogels, L., Mohammadi, R., Schoonhoven, M., Birbil, Ş. I., Dyrba, M., & Alzheimer's Disease Neuroimaging Initiative (2025). Modeling Alzheimer’s disease: Bayesian copula graphical model from demographic, cognitive, and neuroimaging data. Journal of Alzheimer's Disease, 108(1,supplement), S244-S257. https://doi.org/10.1177/13872877251337944
Wasserkrug, S., Boussioux, L., den Hertog, D., Mirzazadeh, F., Birbil, S. I., Kurtz, J., & Maragno, D. (2025). Enhancing decision making through the integration of large language models and operations research optimization. In Proceedings of the 39th Annual AAAI Conference on Artificial Intelligence (27 ed., Vol. 39, pp. 28643-28650). (Proceedings of the AAAI Conference on Artificial Intelligence). https://doi.org/10.1609/aaai.v39i27.35090
von Stackelberg, P. B., Goedhart, R., Huberts, L. C. E., Lokkerbol, J., & Birbil, S. I. (2025). Prediction of Depression Relapse Using Machine Learning With Administrative Data: Balancing Complexity and Simplicity. Quality and Reliability Engineering International. Advance online publication. https://doi.org/10.1002/qre.70139
Julien, E., Postek, K., & Birbil, S. I. (2024). Machine Learning for K-adaptability in Two-Stage Robust Optimization. INFORMS Journal on Computing, 503.
Maragno, D., Buti, G., Birbil, S. I., Liao, Z., Bortfeld, T., den Hertog, D., & Ajdari, A. (2024). Embedding machine learning based toxicity models within radiotherapy treatment plan optimization. Physics in Medicine and Biology, 69(7), Article 075003. https://doi.org/10.1088/1361-6560/ad2d7e[details]
Maragno, D., Kurtz, J., Röber, T. E., Goedhart, R., Birbil, Ş. İ., & den Hertog, D. (2024). Finding regions of counterfactual explanations via robust optimization. INFORMS Journal on Computing, 36(5), 1316–1334. https://doi.org/10.1287/ijoc.2023.0153[details]
Vogels, L., Mohammadi, R., Schoonhoven, M., & Birbil, S. I. (2024). Bayesian Structure Learning in Undirected Gaussian Graphical Models: Literature Review with Empirical Comparison. Journal of the American Statistical Association, 119(548), 3164-3182. https://doi.org/10.1080/01621459.2024.2395504[details]
Vogels, L., Mohammadi, R., Schoonhoven, M. & Birbil, Ş. . (2024). Bayesian Structure Learning in Undirected Gaussian Graphical Models: Literature Review with Empirical Comparison. Taylor & Francis. https://doi.org/10.6084/m9.figshare.26880600.v1
von Stackelberg, P., Goedhart, R., Birbil, S. I., & Does, R. J. M. M. (2024). Comparison of threshold tuning methods for predictive monitoring. Quality and Reliability Engineering International, 40(1), 499-512. https://doi.org/10.1002/qre.3436[details]
Cina, G., Röber, T. E., Goedhart, R., & Birbil, S. I. (2023). Semantic match: Debugging feature attribution methods in XAI for healthcare. Proceedings of Machine Learning Research, 209, 182-191. https://proceedings.mlr.press/v209/cina23a.html[details]
Karaca, U., Birbil, S. I., Aydin, N., & Mullaoğlu, G. (2023). Masking Primal and Dual Models for Data Privacy in Network Revenue Management. European Journal of Operational Research, 308(2), 818-831. https://doi.org/10.1016/j.ejor.2022.11.025[details]
Birbil, S. I., Yildirim, S., Çopur, S., & Akyuz, M. H. (2022). Learning with Subset Stacking. Manuscript submitted for publication.
Dekker, R., Koot, P., Birbil, S. I., & van Embden Andres, M. (2022). Co-designing Algorithms for Governance: Ensuring Responsible and Accountable Algorithmic Management of Refugee Camp Supplies. Big Data & Society, 9(1). https://doi.org/10.1177/20539517221087855[details]
Karaca, U., Birbil, S. I., Yildirim, S., & Aydin, N. (2022). Differentially Private Linear Optimization for Multi-party Resource Sharing. Manuscript submitted for publication.
Kuru, N., Birbil, S. I., Gurbuzbalaban, M., & Yildirim, S. (2022). Differentially Private Accelerated Optimization Algorithms. SIAM Journal on Optimization, 32(2), 795-821. https://doi.org/10.1137/20M1355847[details]
Maragno, D., Röber, T. E., & Birbil, S. İ. (2022). Counterfactual Explanations Using Optimization With Constraint Learning. In OPT2022: Optimization for Machine Learning. Accepted papers OPT-ML. https://doi.org/10.48550/arXiv.2209.10997[details]
Topaloglu, H., Ilker Birbil, S., Frenk, J. B. G., & Noyan, N. (2012). Tractable open loop policies for joint overbooking and capacity control over a single flight leg with multiple fare classes. Transportation Science, 46(4), 460-481. https://doi.org/10.1287/trsc.1110.0403
2025
Engelhardt, F., Kurtz, J., Birbil, S. I., & Ralphs, T. (2025). Counterfactual Explanations for Integer Optimization Problems. Manuscript submitted for publication.
Birbil, S. . (2021). Optimisation for and with Machine Learning (OPTIMAL). https://optimal.uva.nl
Spreker
Birbil, S. . (keynote speaker) (28-4-2022). IPD2022: Innovative Product Development International Conference, Kasetsart University. https://easychair.org/cfp/IPD2022
Birbil, S. . (invited speaker) (12-4-2022). Data Science in Finance Conference - 2022, ABN AMRO. https://dsfc.nl/schedule-2022/
Birbil, S. . (keynote speaker) (7-3-2022). 12th Annual International Conference on Industrial Engineering and Operations Management, Kadir Has University, Istanbul, Turkey.. https://ieomsociety.org/istanbul2022/
Birbil, S. . (speaker) (24-6-2021). Yapay Öğrenmede Yorumlanabilirlik, Sabanci University - Academy of Science: Machine Learning Summer School 2021. https://www.youtube.com/watch?v=83HHZ5INDx0
Birbil, S. . (speaker) (11-1-2021). Rule Generation for Learning and Interpretation, Machine Learning NeEDS Mathematical Optimization. https://www.youtube.com/watch?v=ekcQEYd9C88
Andere
Birbil, S. . (organiser), Romero Morales, D. (organiser), Rudin, C. (organiser), Fokkema, D. (organiser) & Akyuz, H. (participant) (17-10-2022 - 21-10-2022). Making Sense of Interpretable Machine Learning, Leiden (organising a conference, workshop, ...).
Birbil, S. . (examiner) (7-9-2022). Molding the Symbiosis Between Human and Machine (examination).
Birbil, S. . (examiner) (6-4-2022). Numerical Optimal Control of Open Channel Networks (examination).
Birbil, S. . (organiser) & Martin, O. (organiser) (26-3-2022 - 27-3-2022). Stochastic Optimization for Large-Scale Machine Learning, Istanbul (organising a conference, workshop, ...).
Birbil, S. . (chair) (24-3-2022). EURO WISDOM Forum YoungWomen4OR Talks: Data Science and Optimization Webinar (participating in a conference, workshop, ...).
Fajemisin, A. (participant), Maragno, D. (participant), den Hertog, D. (participant) & Birbil, S. . (participant) (22-2-2022 - 1-3-2022). 36th AAAI conference on Artificial Intelligence, Vancouver. Delivering two papers at the AI for Decision Optimization (AI4DO) workshop (participating in a conference, workshop, ...).
Wasserkrug, S., Boussioux, L., den Hertog, D., Mirzazadeh, F., Birbil, S. I., Kurtz, J., & Maragno, D. (2024). From Large Language Models and Optimization to Decision Optimization CoPilot: A Research Manifesto. ArXiv. https://arxiv.org/abs/2402.16269
2024
Vogels, L., Mohammadi, R., Schoonhoven, M. & Birbil, Ş. . (2024). Bayesian Structure Learning in Undirected Gaussian Graphical Models: Literature Review with Empirical Comparison. Taylor & Francis. https://doi.org/10.6084/m9.figshare.26880600.v1
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.