Yin, R., Chen, Y., Karaoglu, S., & Gevers, T. (2025). Ray-Distance Volume Rendering for Neural Scene Reconstruction. In A. Leonardis, E. Ricci, S. Roth, O. Russakovsky, T. Sattler, & G. Varol (Eds.), Computer Vision – ECCV 2024: 18th European Conference, Milan, Italy, September 29–October 4, 2024 : proceedings (Vol. XIV, pp. 377–394). (Lecture Notes in Computer Science; Vol. 15072). Springer. https://doi.org/10.1007/978-3-031-72630-9_22[details]
Kofinas, M., Knyazev, B., Zhang, Y., Chen, Y., Burghouts, G. J., Gavves, E., Snoek, C. G. M., & Zhang, W. D. (2024). Graph Neural Networks for Learning Equivariant Representations of Neural Networks. In International Conference on Learning Representations https://doi.org/10.48550/arXiv.2403.12143
Kofinas, M., Knyazev, B., Zhang, Y., Chen, Y., Burghouts, G. J., Gavves, S., Snoek, C. G. M. & Zhang, D. (8-5-2024). CNN Wild Park - Graph Neural Networks for Learning Equivariant Representations of Neural Networks. Zenodo. https://doi.org/10.5281/zenodo.12797219
Liu, J., Yin, W., Wang, H., Chen, Y., Sonke, J.-J., & Gavves, E. (2024). Dynamic Prototype Adaptation with Distillation for Few-shot Point Cloud Segmentation. In 2024 International Conference in 3D Vision: 3DV 2024 : 18-21 March 2024, Davos, Switzerland : proceedings (pp. 810-819). IEEE Computer Society. https://doi.org/10.1109/3DV62453.2024.00045[details]
Chen, Y., Fernando, B., Bilen, H., Nießner, M., & Gavves, E. (2022). 3D Equivariant Graph Implicit Functions. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, & T. Hassner (Eds.), Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022 : proceedings (Vol. III, pp. 485–502). (Lecture Notes in Computer Science; Vol. 13663). Springer. https://doi.org/10.48550/arXiv.2203.17178, https://doi.org/10.1007/978-3-031-20062-5_28[details]
Chen, Y., Hu, V. T., Gavves, E., Mensink, T., Mettes, P., Yang, P., & Snoek, C. G. M. (2020). PointMixup: Augmentation for Point Clouds. In A. Vedaldi, H. Bischof, T. Brox, & J. M. Frahm (Eds.), Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020 : proceedings (Vol. III, pp. 330-345). (Lecture Notes in Computer Science; Vol. 12348). Springer. https://doi.org/10.1007/978-3-030-58580-8_20[details]
Chen, Y., Mensink, T., & Gavves, E. (2019). 3D Neighborhood Convolution: Learning Depth-Aware Features for RGB-D and RGB Semantic Segmentation. In 2019 International Conference on 3D Vision: 3DV 2019 : proceedings : Quebec, Canada, 15-18 September 2019 (pp. 173-182). IEEE Computer Society, Conference Publishing Services. https://doi.org/10.48550/arXiv.1910.01460, https://doi.org/10.1109/3DV.2019.00028[details]
Ibrahimi, S., Chen, S., Arya, D., Câmara, A., Chen, Y., Crijns, T., van der Goes, M., Mensink, T., van Miltenburg, E., Odijk, D., Thong, W., Zhao, J., & Mettes, P. (2019). Interactive Exploration of Journalistic Video Footage through Multimodal Semantic Matching. In MM'19: proceedings of the 27th ACM Conference on Multimedia : October 21-25, 2019, Nice, France (pp. 2196-2198). Association for Computing Machinery. https://doi.org/10.1145/3343031.3350597[details]
2023
Chen, Y. (2023). Continuity in 3D visual learning. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Kofinas, M., Knyazev, B., Zhang, Y., Chen, Y., Burghouts, G. J., Gavves, S., Snoek, C. G. M. & Zhang, D. (8-5-2024). CNN Wild Park - Graph Neural Networks for Learning Equivariant Representations of Neural Networks. Zenodo. https://doi.org/10.5281/zenodo.12797219
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.