Arakelyan, E., Minervini, P., Daza, D., Cochez, M., & Augenstein, I. (in press). Adapting Neural Link Predictors for Data-Efficient Complex Query Answering. In 37th Conference on Neural Information Processing Systems (NeurIPS 2023) (Advances in Neural Information Processing Systems; Vol. 36). Neural Information Processing Systems Foundation. https://openreview.net/forum?id=1G7CBp8o7L
Cochez, M., Alivanistos, D., Arakelyan, E., Berrendorf, M., Daza, D., Galkin, M., Minervini, P., Niepert, M., & Ren, H. (2023). Approximate Answering of Graph Queries. In P. Hitzler, M. K. Sarker, & A. Eberhart (Eds.), Compendium of Neurosymbolic Artificial Intelligence (pp. 373-386). (Frontiers in Artificial Intelligence and Applications; Vol. 369). IOS Press. https://doi.org/10.48550/arXiv.2308.06585, https://doi.org/10.3233/FAIA230149[details]
Daza, D., Alivanistos, D., Mitra, P., Pijnenburg, T., Cochez, M., & Groth, P. (2023). BioBLP: a modular framework for learning on multimodal biomedical knowledge graphs. Journal of Biomedical Semantics, 14, Article 20. https://doi.org/10.1186/s13326-023-00301-y[details]
Xiong, B., Nayyeri, M., Daza, D., & Cochez, M. (2023). Reasoning beyond Triples: Recent Advances in Knowledge Graph Embeddings. In CIKM '23: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management : October 21-25, 2023, Birmingham, England (pp. 5228-5231). Association for Computing Machinery. https://doi.org/10.1145/3583780.3615294
2022
Daza, D., Cochez, M., & Groth, P. (2022). SlotGAN: Detecting Mentions in Text via Adversarial Distant Learning. In A. Vlachos, P. Agrawal, A. Martins, G. Lampouras, & C. Lyu (Eds.), Sixth Workshop on Structured Prediction for NLP: Proceedings of the Workshop : SPNLP 2022 : May 27, 2022 (pp. 32-39). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.spnlp-1.4[details]
Arakelyan, E., Daza Cruz, D. F., Minervini, P., & Cochez, M. (2021). Complex Query Answering with Neural Link Predictors. In International Conference on Learning Representations (ICLR) https://openreview.net/forum?id=Mos9F9kDwkz
Daza, D., Cochez, M., & Groth, P. (2021). Inductive entity representations from text via link prediction. In The Web Conference 2021: proceedings of the World Wide Web Conference WWW 2021 : April 19-23, 2021, Ljubljana, Slovenia (pp. 798-808). Association for Computing Machinery. https://doi.org/10.1145/3442381.3450141[details]
Hu, Q., Daza, D., Swinkels, L., Usaite, K., Hoen, R-J. ., & Groth, P. (2023). Harnessing the Web and Knowledge Graphs for Automated Impact Investing Scoring. Paper presented at KDD Workshop: Fragile Earth: AI for Climate Sustainability - from Wildfire Disaster Management to Public Health and Beyond, Long Beach, California, United States. https://doi.org/10.48550/arXiv.2308.02622
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.