Dablander, F., Sachisthal, M. S. M., Cologna, V., Strahm, N., Bosshard, A., Grüning, N. M., Green, A. J. K., Brick, C., Aron, A. R., & Haslbeck, J. M. B. (2024). Climate change engagement of scientists. Nature Climate Change. https://doi.org/10.1038/s41558-024-02091-2
Eigenschink, M., Bellach, L., Leonard, S., Dablander, T. E., Maier, J., Dablander, F., & Sitte, H. H. (2023). Cross-sectional survey and Bayesian network model analysis of traditional Chinese medicine in Austria: investigating public awareness, usage determinants and perception of scientific support. BMJ Open, 13(3), Article e060644. https://doi.org/10.1136/bmjopen-2021-060644[details]
Dablander, F., Heesterbeek, H., Borsboom, D., & Drake, J. M. (2022). Overlapping timescales obscure early warning signals of the second COVID-19 wave. Proceedings of the Royal Society B: Biological Sciences, 289(1968), Article 20211809. https://doi.org/10.1098/rspb.2021.1809[details]
Dablander, F., Huth, K., Gronau, Q. F., Etz, A., & Wagenmakers, E-J. (2022). A puzzle of proportions: Two popular Bayesian tests can yield dramatically different conclusions. Statistics in Medicine, 41(8), 1319-1333. Advance online publication. https://doi.org/10.1002/sim.9278[details]
Dekker, M. M., Blanken, T. F., Dablander, F., Ou, J., Borsboom, D., & Panja, D. (2022). Quantifying agent impacts on contact sequences in social interactions. Scientific Reports, 12, Article 3483. https://doi.org/10.1038/s41598-022-07384-0[details]
Haslbeck, J. M. B., Ryan, O., & Dablander, F. (2022). The Sum of All Fears: Comparing Networks Based on Symptom Sum-Scores. Psychological Methods, 27(6), 1061-1068. Advance online publication. https://doi.org/10.1037/met0000418[details]
Blanken, T. F., Tanis, C. C., Nauta, F. H., Dablander, F., Zijlstra, B. J. H., Bouten, R. R. M., Oostvogel, Q. H., Boersma, M. J., van der Steenhoven, M. V., van Harreveld, F., de Wit, S., & Borsboom, D. (2021). Promoting physical distancing during COVID-19: a systematic approach to compare behavioral interventions. Scientific Reports, 11, Article 19463. https://doi.org/10.1038/s41598-021-98964-z[details]
Tanis, C. C., Leach, N. M., Geiger, S. J., Nauta, F. H., Dablander, F., van Harreveld, F., de Wit, S., Kanters, G., Knoppers, J., Markus, D. A. W., Bouten, R. R. M., Oostvogel, Q. H., Boersma, M. J., van der Steenhoven, M. V., Borsboom, D., & Blanken, T. F. (2021). Smart Distance Lab’s art fair, experimental data on social distancing during the COVID-19 pandemic. Scientific Data, 8, Article 179. https://doi.org/10.1038/s41597-021-00971-2[details]
Tanis, C. C., Leach, N. M., Geiger, S., Nauta, F. H., Dablander, F., van Harreveld, F., de Wit, S., Kanters, G., Knoppers, J., Markus, D. A. W., Bouten, R. R. M., Oostvogel, Q. H., Boersma, M. J., van der Steenhoven, M. V., Borsboom, D. & Blanken, T. F. (2021). Metadata record for: Smart Distance Lab's art fair, experimental data on social distancing during the COVID-19 pandemic. Figshare. https://doi.org/10.6084/m9.figshare.14312180.v1
Tanis, C. C., Leach, N. M., Geiger, S., Nauta, F. H., Dablander, F., van Harreveld, F., de Wit, S., Kanters, G., Knoppers, J., Markus, D. A. W., Bouten, R. R. M., Oostvogel, Q. H., Boersma, M. J., van der Steenhoven, M. V., Borsboom, D. & Blanken, T. F. (2021). Metadata record for: Smart Distance Lab's art fair, experimental data on social distancing during the COVID-19 pandemic. Figshare. https://doi.org/10.6084/m9.figshare.14312180.v1
van Doorn, J., van den Bergh, D., Böhm, U., Dablander, F., Derks, K., Draws, T., Etz, A., Evans, N. J., Gronau, Q. F., Haaf, J. M., Hinne, M., Kucharský, Š., Ly, A., Marsman, M., Matzke, D., Komarlu Narendra Gupta, A. R., Sarafoglou, A., Stefan, A., Voelkel, J. G., & Wagenmakers, E-J. (2021). The JASP guidelines for conducting and reporting a Bayesian analysis. Psychonomic Bulletin & Review, 28(3), 813–826. Advance online publication. https://doi.org/10.3758/s13423-020-01798-5[details]
Dablander, F., Ryan, O., & Haslbeck, J. M. B. (2020). Choosing between AR(1) and VAR(1) Models in Typical Psychological Applications. PLoS ONE, 15(10), Article e0240730. https://doi.org/10.1371/journal.pone.0240730[details]
Ly, A., Stefan, A., van Doorn, J., Dablander, F., van den Bergh, D., Sarafoglou, A., Kucharský, S., Derks, K., Gronau, Q. F., Raj, A., Boehm, U., van Kesteren, E-J., Hinne, M., Matzke, D., Marsman, M., & Wagenmakers, E-J. (2020). The Bayesian Methodology of Sir Harold Jeffreys as a Practical Alternative to the P Value Hypothesis Test. Computational Brain & Behavior, 3(2), 153-161. Advance online publication. https://doi.org/10.31234/osf.io/dhb7x, https://doi.org/10.1007/s42113-019-00070-x[details]
van den Bergh, D., van Doorn, J., Marsman, M., Draws, T., van Kesteren, E-J., Derks, K., Dablander, F., Gronau, Q. F., Kucharský, Š., Komarlu Narendra Gupta, A. R., Sarafoglou, A., Voelkel, J. G., Stefan, A., Ly, A., Hinne, M., Matzke, D., & Wagenmakers, E-J. (2020). A Tutorial on Conducting and Interpreting a Bayesian ANOVA in JASP. Année Psychologique, 120(1), 73-96. https://doi.org/10.31234/osf.io/spreb, https://doi.org/10.3917/anpsy1.201.0073[details]
Edelsbrunner, P., & Dablander, F. (2019). The Psychometric Modeling of Scientific Reasoning: a Review and Recommendations for Future Avenues. Educational Psychology Review, 31(1), 1-34. https://doi.org/10.1007%2Fs10648-018-9455-5[details]
Jakob, L., Garcia-Garzon, E., Jarke, H., & Dablander, F. (2019). The Science Behind the Magic? The Relation of the Harry Potter “Sorting Hat Quiz” to Personality and Human Values. Collabra: Psychology, 5(1), Article 31. https://doi.org/10.1525/collabra.240[details]
Etz, A., Gronau, Q. F., Dablander, F., Edelsbrunner, P. A., & Baribault, B. (2018). How to become a Bayesian in eight easy steps: An annotated reading list. Psychonomic Bulletin & Review, 25(1), 219-234. https://doi.org/10.3758/s13423-017-1317-5[details]
2022
Maier, M., Bartoš, F., Quintana, D., Dablander, F., van den Bergh, D., Marsman, M., Ly, A., & Wagenmakers, E. M. (2022). Model-Averaged Bayesian t-Tests. (pp. 1-44). PsyArXiv. https://doi.org/10.31234/osf.io/d5zwc
2023
Dablander, F. (2023). Changing systems: Statistical, causal, and dynamical perspectives. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Tanis, C. C., Leach, N. M., Geiger, S., Nauta, F. H., Dablander, F., van Harreveld, F., de Wit, S., Kanters, G., Knoppers, J., Markus, D. A. W., Bouten, R. R. M., Oostvogel, Q. H., Boersma, M. J., van der Steenhoven, M. V., Borsboom, D. & Blanken, T. F. (2021). Metadata record for: Smart Distance Lab's art fair, experimental data on social distancing during the COVID-19 pandemic. Figshare. https://doi.org/10.6084/m9.figshare.14312180.v1
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.