Prof. Dr Hans Dekker
Institute for Theoretical Physics
Science Park 904
University of Amsterdam
and
Private Institute for Advanced Study
Résidence Le Jardin
Lijnbaansgracht 209L
Amsterdam
The Netherlands
Biography:
Hans J. van Ommeren Dekker was born on January 18, 1947, in Amsterdam, The Netherlands. He studied physics at the University of Technology, in Delft, where he completed his studies under the supervision of Dirk Polder and Rudolf de L. Kronig, in 1971. He then joined the staff of the Netherlands Physics Laboratory, in The Hague, where he became head of the Theoretical Physics Group. In 1980 he received a Ph.D. in theoretical physics from Nico G. van Kampen, at the University of Utrecht. During 1981-1982 he was Visiting Professor at the Department of Chemistry, at MIT Boston. He became Lorentz-van Iterson Professor at the Institute for Theoretical Physics of the University of Amsterdam in 1989. Since 1998 he also holds the position of Director of the Private Institute for Advanced Study, in Amsterdam. His interests range from quantum mechanics to hydrodynamic turbulence.
Research highlights:
⚫ The systematic expansion of the Markovian master equation near a critical point (1980).
⚫ Exact solution of the spectral divergence problem for the quantum mechanical damped harmonic oscillator (1985).
⚫ Discovery of the weak damping depopulation factor in an exactly solvable model for quantum tunnelling and thermal activation (1988).
⚫ Low-dimensional theory of weak-to-strong friction turnover in thermal activation (with A. Maassen van den Brink, 1994).
⚫ Rigorous generalization of the Kramers Fokker-Planck equation from macrocanonical to microcanonical processes (with A. Maassen van den Brink, 1997).
⚫ Derivation of the temporal frequency spectrum for both normal and anomalous Kolmogorov scaling in hydrodynamic turbulence (2011).
⚫ A novel analysis of self-gravitating charge: the Einstein-Maxwell electron radius (2014).
Awards:
Le Poole Award (Delft, 1971)
Fulbright Foundation Award (1981)
Van Schoonevelt Prize and Medal (The Hague, 1992)
Panta Rhei Award (J.M. Burgers Centre, 1994)
Schulman Award (ICTP-Trieste, 1996)
Akzo-Nobel Prize Nomination (1999)
J.E. Hamilton Foundation Physics Award (2009)
Publications:
About 120 articles in refereed journals, and 60 in conference proceedings etc.
[https://researchgate.net/profile/hans_dekker3/publications]
Book:
Classical and Quantum Mechanics of the Damped Harmonic Oscillator (North-Holland: Physics Letters Series Vol. 80, Amsterdam, 1981)
[https://doi.org/10.1016/0370-1573(81)90033-8] [https://researchgate.net/publication/222990789]
Prof. dr ir Hans Dekker
Institute for Theoretical Physics
University of Amsterdam
Science Park 904
1098 XH Amsterdam
and
Private Institute for Advanced Study
Résidence Le Jardin
1016 XA Amsterdam
h.dekker@uva.nl
PHYSICAL REVIEW PUBLICATIONS:
● Quantization of the Linearly Damped Harmonic Oscillator, Physical Review A 16 (1977) 2126-2134. [https://doi.org/10.1103/PhysRevA.16.2126] [https://researchgate.net/publication/235576443]
● Functional Integration and the Onsager-Machlup Lagrangian for Continuous Markov Processes in Riemannian Geometries, Physical Review A 19 (1979) 2102-2111. [https://doi.org/10.1103/PhysRevA.19.2102] [https://researchgate.net/publication/235578835]
● Functional Integration in Riemannian Geometries Revisited, Physical Review A 22 (1980) 1315-1316. [https://doi.org/10.1103/PhysRevA.22.1315] [https://researchgate.net/publication/238974128]
● Proof of Identity of Graham and Dekker Covariant Propagators, Physical Review A 24 (1981) 3182-3187. [https://doi.org/10.1103/PhysRevA.24.3182] [https://researchgate.net/publication/238300726]
● Exactly Solvable Model of a Particle Interacting with a Field: the Origin of a Quantum Mechanical Divergence, Physical Review A 31 (1985) 1067-1076. [https://doi.org/10.1103/PhysRevA.31.1067] [https://researchgate.net/publication/13392719]
● Nonpermuting Zero-damping and Infinite-system Limits in an Exactly Solvable Model of a Particle Interacting with a Field, Physical Review A 33 (1986) 2140-2141. [https://doi.org/10.1103/PhysRevA.33.2140] [https://researchgate.net/publication/13392005]
● Noninteracting-blip Approximation for a Two-level System Coupled to a Heat Bath, Physical Review A 35 (1987) 1436-1437. [https://doi.org/10.1103/PhysRevA.35.1436] [https://researchgate.net/publication/13391422]
● Fractal Analysis of Chaotic Tunnelling of Squeezed States in a Double-Well Potential, Physical Review A 35 (1987) 1825-1837. [https://doi.org/10.1103/PhysRevA.35.1825] [https://researchgate.net/publication/13391478]
● Exactly Solvable Model for Thermal Activation and Quantum Tunneling in Ohmic Systems, Physical Review A 38 (1988) 6351-6361. [https://doi.org/10.1103/PhysRevA.38.6351] [https://researchgate.net/publication/13389525]
● Nonisothermal Activation: Nonequilibrium Thermodynamics of Metastable Mesoscopic Systems, Physical Review A 43 (1991) 4224-4230. [https://doi.org/10.1103/PhysRevA.43.4224] [https://researchgate.net/publication/13382653]
● Multilevel Tunneling and Coherence: Dissipative Spin-hopping Dynamics at Finite Temperatures, Physical Review A 44 (1991) 2314-2323. [https://doi.org/10.1103/PhysRevA.44.2314] [https://researchgate.net/publication/1338]
● & A. Maassen van den Brink, Low-dimensional Turnover Theory of Thermal Activation. Physical Review E 49 (1994) 2559-2566. [https://doi.org/10.1103/PhysRevE.49.2559] [https://researchgate.net/publication/13326819]
● Multilevel Tunneling and Coherence: Dissipative Spin-Hopping Dynamics at Finite Temperatures: Erratum, Physical Review E 50 (1994) 4265. [https://doi.org/10.1103/PhysRevE.50.4265] [https://researchgate.net/publication/13317301]
● & A. Maassen van den Brink, Temperature Relaxation and the Kapitza Boundary Resistance Paradox, Physical Review B 51 (1995) 17842-17847. [https://doi.org/10.1103/PhysRevB.51.17842] [https://researchgate.net/publication/13310269]
● & G. de Leeuw and A. Maassen van den Brink, Boundary Layer Turbulence as a Kangaroo Process, Physical Review E 52 (1995) 2549-2558. [https://doi.org/10.1103/PhysRevE.52.2549] [https://researchgate.net/publication/13325002]
● & A. Maassen van den Brink, Josephson-Junction Thermodynamics and the Superducting Phase Transition, Physical Review B 55 (1997) R8697-8700. [https://doi.org/10.1103/PhysRevB.55.R8697] [https://researchgate.net/publication/243431212]
● & A. Maassen van den Brink, Microscopic Theory of Nonisothermal Brownian Motion, Physical Review E 55 (1997) 6257-6259. [https://doi.org/10.1103/PhysRevE.55.6257] [https://researchgate.net/publication/238973667]
● Turbulence: Large-scale sweeping and the emergence of small-scale Kolmogorov spectra, Physical Review E 84, 026302 (2011) 1-10. [https://doi.org/10.1103/PhysRevE.84.026302] [https://researchgate.net/publication/51653479]
● Self-gravitation of massive charge and the Einstein-Maxwell electron radius /Novel exact charged mass distribution in classical field theory and the notion of point-like elementary charge, http://arXiv.org/physics.gen-ph/1408.4796 (2016) 1-6. [https://arXiv.org/abs/1408.4796] [https://researchgate.net/publication/295912256]
Prof. dr ir Hans Dekker
Institute for Theoretical Physics
University of Amsterdam
Science Park 904
1098 XH Amsterdam
and
Private Institute for Advanced Study
Résidence Le Jardin
1016 XA Amsterdam
h.dekker@uva.nl
LASER THEORY:
● Corrections to the Third Order Lamb Theory and its Application to Mode Locking Phenomena, Phys. Lett. 42A (1973) 410-412.
● Stationary Momentum Space Solution of the Fokker-Planck Equation for a Simple Model of a Laser Oscillator Exhibiting Spatial Dispersion, Opt. Comm. 10 (1974) 114-119.
● Boundary Conditions in Laser Oscillators with Spatial Dispersion, Appl. Phys. 4 (1974) 105-107.
● Theory of Self-Locking Phenomena in the Pressure Broadened Three-Mode He-Ne Laser, Appl. Phys. 4 (1974) 257-263.
● On the Concept of Photoncurrent and Boundary Conditions in the Ginzburg-Landau Theory of the Laser, Phys. Lett. 51A (1975) 29-30.
● & C.W. Lamberts, Stability measurements of the tunable single frequency He‑Ne laser by means of self-locking phenomena, Opt. Qu. Electr. 7 (1975) 239-245.
● Integral Formulation of the Ginzburg-Landau Theory of the Laser, Opt. Comm. 16 (1976) 12-15.
● The Fokker-Planck Equation for the Continuum Mode Laser with Spatially Inhomogenous Dissipation and Excitation, Physica 83C (1976) 183-192.
● Stationary Solution of the Fokker-Planck Equation for the Continuum Mode Laser with Spatially Inhomogeneous Dissipation and Excitation, Physica 83C (1976) 193-199.
● On the Feynman Proof of the Exact Relation between a Class of Path Sums and the General Nonlinear Fokker-Planck Equation, Physica 84A (1976) 205-211.
● Cerenkov Laser Theory, Phys. Lett. 59A (1976) 369-370.
● A Theory of Cooperative Effects in Stimulated Cerenkov Radiation, Physica 90C (1977) 283-291.
● & J.P.M. de Vreede, On the Theory of Ultra-short Time Resolved Photodetection, Optics Comm. 30 (1979) 139-144.
STOCHASTIC PROCESSES:
● & N.G. van Kampen, Eigenvalues of a Diffusion Process with a Critical Point, Phys. Lett. 73A (1979) 374-376.
● On the Critical Point of a Malthus-Verhulst Process, J. Chem. Phys. 72 (1980) 189-191.
● & N.G. van Kampen, The Expansion of the Fokker-Planck Equation including a Critical Point, Phys. Lett. 76A (1980) 101-103.
● Critical Dynamics: The Expansion of the Master Equation Including a Critical Point, I: Diffusion Processes, Physica 103A (1980) 55-79.
● Critical Dynamics: The Expansion of the Master Equation Including a Critical Point, II: General Markov Processes, Physica 103A (1980) 80-98.
● & R.J.L. Lerou, Exact Computation of High-order Perturbational Eigensolutions and its Application to the Analysis of a Spectral Degeneracy in a Bistable Diffusion Proces, Phys. Lett. 83A (1981) 371-375.
● Unstable State Dynamics: a Systematic Evaluation of the Master Equation, Phys. Lett. 88A (1982) 279-281.
● Correlation Time Expansion for Multidimensional Weakly Non-Markovian Gaussian Processes, Phys. Lett. 90A (1982) 26-30.
PATH INTEGRALS:
● On the Feynman Proof of the Exact Relation between a Class of Path Sums and the General Nonlinear Fokker-Planck Equation, Physica 84A (1976) 205-211.
● Time-local Gaussian Processes, Path Integrals and Nonequilibrium Nonlinear Diffusion, Physica 85A (1976) 363-373.
● On the Functional Integral for Generalized Wiener Processes and Nonequilibrium Phenomena, Physica 85A (1976) 598-606.
● An Unconventional Calculation of Gaussian Integrals, Simon Stevin 50 (1976) 145-153.
● A Functional Stieltjes Measure and Generalized Diffusion Processes, Physica 87A (1977) 419-425.
● Proof of the Path Integral Representation of the Nonlinear Fokker-Planck Equation by means of Fourier Series, Physics Letters 65A (1978) 388-390.
● On the Evaluation of the Path Integral for Nonlinear Diffusion Processes by means of Fourier Series, Phyica 92A (1978) 438-445.
● Diffusion Processes and their Paths, Physics Letters 67A (1978) 90-92.
● Derivation of the Onsager-Machlup Lagrangian for General Diffusion Processes by means of Fourier Series, Physics Letters 68A (1978) 137-140.
● On the Functional Integral Representation of General Continuous Markov Processes, Physica 94A (1978) 339-353.
● Path Integrals for Diffusion Processes in Riemannian Spaces, Phys. Lett. 69A (1978) 241-243.
● Functional Integration and the Onsager-Machlup Lagrangian for Continuous Markov Processes in Riemannian Geometries, Physical Review A 19 (1979) 2102-2111.
● Path Integrals in Riemannian Spaces, Phys. Lett. 76A (1980) 8-10.
● Functional Integration in Riemannian Geometries Revisited, Physical Review A 22 (1980) 1315-1316.
● Quantization in Curved Spaces: Functional Integration and the Quantum Action Principle in Riemannian Geometries, in "Functional Integration: Theory and Applications", edited by JP. Antoine & E. Tirapegui (Plenum, New York, 1980) 207-224.
● On the Path Integral for Diffusion in Curved Spaces, Physica 103A (1980) 586-596.
● On the Most Probable Transition Path of a General Diffusion Process, Phys. Lett. 80A (1980) 99-101.
● Proof of Identity of Graham and Dekker Covariant Lattice Propagators, Physical Review A 24 (1981) 3182-3187.
● The Frozen False Vacuum, Proc. Conf. Path Integral Method & Applications (ICTP-Triëst, 1987): Path Summation: Achievements and Goals, edited by S. Lundqvist, A. Ranfagni, V. Sa-yakanit & L.S. Schulman (World Scientific, Singapore, 1988) p. 147-167.
● Incoherent Tunneling at Weak Bias: Strong Quantum Damping, Physica A 154 (1988) 61-88.
● Incoherent Tunneling at Weak Bias: Weak Quantum Damping, Physica A 156 (1989) 756-780.
● Dissipative Quantum Decay at Weak Bias: Finite Temperature Tunneling through Almost Degenerate Barriers, Proc. Conf. Path Integrals from meV to MeV (FTS-Bangkok, 1989), edited by V. Sa-yakanit et al. (World Scientific, Singapore, 1990) p. 329-354.
● Kinetics of Nearly Degenerate Metastable Systems with Ohmic Dissipation: the Nongaussian Quantum Statistical Path Integral, Intern. J. Mod. Phys. B4 (1990) 549-567.
● Imaginary-time Path Integrals and Degenerate Metastability, Proc. BARC Seminar on Path Integral Methods and their Application (Bombay, 1989), edited by D.C. Khandekar & S.W. Lawande (Indian Phys. Assoc., Bombay, 1990) p. 105-128.
● Dissipative Quantum Processes, in: Proc. Conf. Path. Integrals in Physics, Bangkok, 1993, edited by V.Sa-yakanit et al. (World Scientific, Singapore, 1994) p.137-153.
THERMAL ACTIVATION:
● On the Theory of Activation: Kramers' Reaction Rate in Bistable Systems, Phys. lett. 112A (1985) 197-200.
● Escape over a Sharp Edged Barrier: The Theory of Activation for the Double Oscillator, Phys. Lett. 113A (1985) 193-196.
● Escape over a Potential Barrier: the Activation Rate in Bistable Systems, Physica 135A (1986) 80-104.
● Kramers' Activation Rate for a Sharp Edged Potential Barrier: The Double Oscillator, Physica 136A (1986) 124-146.
● Dissipative Quantum Tunnelling and Thermal Activation: an Exactly Solvable Model, Mod. Phys. Lett. B 2 (1988) 853-856.
● Exactly Solvable Model for Thermal Activation and Quantum Tunneling in Ohmic Systems, Physical Review A 38 (1988) 6351-6361.
● The Kramers Turnover Problem: Recrossing Effects and the Energy Diffusion Description of Thermal Activation, Mod. Phys. Lett. B 3 (1989) 1093-1099.
● Simple Unified Quantum Stochastic Modeling of Ohmic Metastability, Proc. 3rd ISQM-Tokyo '89, edited by S. Kobayashi et al. (Phys. Soc. Japan, Tokyo, 1990) p. 196-200.
● Thermal Activation: Kramers' Theory Revisited, Physica A 166 (1990) 129-156.
● Nonisothermal Metastability in Mesoscopic Systems, Mod. Phys. Lett. B 5 (1991) 447-453.
● Nonisothermal Activation: Nonequilibrium Thermodynamics of Metastable Mesoscopic Systems, Physical Review A 43 (1991) 4224-4230.
● Nonequilibrium Thermodynamics of Nonisothermal Activation: Escape over Mesoscopic Barriers I. The Stochastic Process, Physica A 173 (1991) 381-410.
● Nonequilibrium Thermodynamics of Nonisothermal Activation: Escape over Mesoscopic Barriers II. The Escape Rate, Physica A 173 (1991) 411-444.
● Multisite Spin Hopping Analysis of Multilevel Dissipative Quantum Tunneling and Coherence at Finite Temperatures III. Strong Coupling, Physica A 178 (1991) 289-331.
● & A. Maassen van den Brink, Transition State Theory in Extended Phase Space, Mod. Phys. Lett. B 7 (1993) 1263-1268.
● & A. Maassen van den Brink, Low-dimensional Turnover Theory of Thermal Activation, Physical Review E 49 (1994) 2559-2566.
● From Microscopia to Macroscopia: An Educated “Game of Chance” in Physics, in: “Chance and Uncertainty”, Edited by H.W. Capel et al. (Vossiuspers/AUP, Amsterdam, 1995) p. 87-105.
● & A. Maassen van den Brink, Microscopic Theory of Nonisothermal Brownian Motion, Physical Review E 55 (1997) 6257-6259.
● & A. Maassen van den Brink, Towards a Microscopic Theory of Nonisothermal Stochastic Processes, Physica A 237 (1997) 75-94.
● & A. Maassen van den Brink, Reaction-Rate Theory: Weak-to-Strong-Friction Turnover in Kramers' Fokker-Planck Model, Physica A 237 (1997) 515-553.
● & A. Maassen van den Brink, Nonisothermal Activation: Nonlinear Transport Theory, in: Landauer Festschrift, Ed. S. Datta, A Special Issue of: Superlattices and Microstructures Vol. 23 (1998) 479-494.
● & A. Maassen van den Brink, Nonequilibrium Thermodynamics of Mesoscopic Systems, J. Supercond. 12 (1999) p. 719-725.
QUANTUM DISSIPATION:
● Stationary Momentum Space Solution of the Fokker-Planck Equation for a Simple Model of a Laser Oscillator Exhibiting Spatial Dispersion, Opt. Comm. 10 (1974) 114-119.
● On the Quantization of Dissipative Systems in the Lagrange-Hamilton Formalism, Z. Phys. B21 (1975) 295-300.
● The Fokker-Planck Equation for the Continuum Mode Laser with Spatially Inhomogenous Dissipation and Excitation, Physica 83C (1976) 183-192.
● On the Statistics of Quantised Dissipative Systems, Z. Phys. B24 (1976) 211-218.
● Note on the Symmetrized Density Operator Treatment of Quantized Dissipative Systems, Z. Phys. B25 (1976) 293-295.
● On the Noise Operator Approach to Quantized Dissipative Systems, Z. Phys. B26 (1977) 273-279.
● Quantization of the Linearly Damped Harmonic Oscillator, Physical Review A16 (1977) 2126-2134.
● On the Phase Space Quantization of the Linearly Damped Harmonic Oscillator, Physica 95A (1979) 311-323.
● On the Master Equation and Pure State Representations for the Quantized Damped Oscillator, Phys. Lett. 74A (1979) 15-17.
● Dissipation of Energy Quanta, Phys. Lett. 76A (1980) 362-364.
● Damped Oscillator Pure State Representations, Phys. Lett. 80A (1980) 369-371.
● Classical and Quantum Mechanics of the Damped Harmonic Oscillator, Physics Reports 80 (1981) 1-112.
● Quantum Field Theory of an Oscillator Coupled to a Finite String, Phys. Lett. 92A (1982) 61-62.
● & M.C. Valsakumar, A Fundamental Constraint on Quantum Mechanical Diffusion Coefficients, Phys. Lett. 104A (1984) 67-71.
● A Note on the Exact Solution of the Dynamics of an Oscillator Coupled to a Finitely Extended One-dimensional Mechanical Field and the Ensuing Quantum Mechanical Ultraviolet Divergence, Phys. Lett. 104A (1984) 72-76.
● Particles on a String: Towards Understanding a Quantum Mechanical Divergence, Phys. Lett. 105A (1984) 395-400.
● Bound Electron Dynamics: Exact Solution for a One-dimensional Oscillator-String Model, Phys. Lett. 105A (1984) 401-406.
● Exactly Solvable Model of a Particle Interacting with a Field: the Origin of a Quantum Mechanical Divergence, Physical Review A31 (1985) 1067-1076.
● Exact Classical and Quantum Mechanics of a Particle Coupled to a Membrane, Physica 129A (1985) 503-513.
● Dynamics of Radiating Electrons, Phys. lett. 107A (1985) 255-258.
● A Contribution to the Dynamical Theory of Radiating Electrons, Physica 133A (1985) 1-34.
● Nonpermuting Zero-damping and Infinite-system Limits in an Exactly Solvable Model of a Particle Interacting with a Field, Physical Review A33 (1986) 2140-2141.
● Nonpermuting Limits (of Zero-damping and Infinite-system Size) in an Exactly Solvable One-dimensional Electrodynamical Model, Phys. Lett. 114A (1986) 292-294.
● Nonpermuting Limits in the Theory of Radiating Electrons: Zero-damping versus Infinite-volume, Physica 139A (1986) 430-436.
● Quantum Relaxation and the Fundamental Commutator, Phys. Lett. 119A (1986) 201-202.
● Quantum Coherence: Two-State System in a Thermal Environment, J. Physics (Solid State) C20 (1987) 3643-3646.
● Noninteracting-blip Approximation for a Two-level System Coupled to a Heat Bath, Physical Review A35 (1987) 1436-1437.
● Dynamics of the Dissipative Two-State System: the Noninteracting-blip Approximation, Physica 141A (1987) 570-574.
● Quantum Coherence and Tunnelling in a Double-Well Potential in a Thermal Environment: Dynamics of the Weakly Coupled Spin-Boson System, Physica 144A (1987) 453-480 & 146A (1987) 662.
● Dissipative Quantum Mechanics: a Proof of Dynamical Consistency, Physica 144A (1987) 445-452.
● Dynamics of the Dissipative Two-State System, Mark Kac Seminar: CWI Syllabus 17 (1987) 147-152.
● Quantum Mechanical Barrier Problems I: Coherence and Tunnelling in Asymmetric Potentials, Physica 146A (1987) 375-386.
● Quantum Mechanical Barrier Problems II: Dissipative Tunnelling at Finite Temperatures for the Unbiased Oscillator, Physica 146A (1987) 387-395.
● Quantum Mechanical Barrier Problems III: Dissipative Tunnelling at Finite Temperatures for the Weakly Biased Oscillator, Physica 146A (1987) 396-403.
● The Frozen False Vacuum, Proc. Conf. Path Integral Method & Applications (ICTP-Triëst, 1987): Path Summation: Achievements and Goals, edited by S. Lundqvist, A. Ranfagni, V. Sa-yakanit & L.S. Schulman (World Scientific, Singapore, 1988) p. 147-167.
● Dissipative Quantum Tunnelling and Thermal Activation: an Exactly Solvable Model, Mod. Phys. Lett. B2 (1988) 853-856.
● Incoherent Tunneling at Weak Bias: Strong Quantum Damping, Physica A154 (1988) 61-88.
● Exactly Solvable Model for Thermal Activation and Quantum Tunneling in Ohmic Systems, Physical Review A38 (1988) 6351-6361.
● Incoherent Tunneling at Weak Bias: Weak Quantum Damping, Physica A156 (1989) 756-780.
● Dissipative Quantum Decay at Weak Bias: Finite Temperature Tunneling through Almost Degenerate Barriers, Proc. Conf. Path Integrals from meV to MeV (FTS-Bangkok, 1989), edited by V. Sa-yakanit et al. (World Scientific, Singapore, 1990) p. 329-354.
● Kinetics of Nearly Degenerate Metastable Systems with Ohmic Dissipation: the Nongaussian Quantum Statistical Path Integral, Intern. J. Mod. Phys. B4 (1990) 549-567.
● Simple Unified Quantum Stochastic Modeling of Ohmic Metastability, Proc. 3rd ISQM-Tokyo '89, edited by S. Kobayashi et al. (Phys. Soc. Japan, Tokyo, 1990) p. 196-200.
● Imaginary-time Path Integrals and Degenerate Metastability, Proc. BARC Seminar on Path Integral Methods and their Application (Bombay, 1989), edited by D.C. Khandekar & S.W. Lawande (Indian Phys. Assoc., Bombay, 1990) p. 105-128.
● The Dissipative Double-well Potential: a Multilevel Spin Hopping Analysis, Mod. Phys. Lett. B5 (1991) 351-356.
● Multilevel Tunneling and Coherence: Dissipative Spin-hopping Dynamics at Finite Temperatures, Physical Review A44 (1991) 2314-2323.
● Multisite Spin Hopping Analysis of Multilevel Dissipative Quantum Tunneling and Coherence at Finite Temperatures I. General Theory, Physica A175 (1991) 485-527.
● Multisite Spin Hopping Analysis of Multilevel Dissipative Quantum Tunneling and Coherence at Finite Temperatures II. Weak Coupling, Physica A176 (1991) 220-240.
● Multisite Spin Hopping Analysis of Multilevel Dissipative Quantum Tunneling and Coherence at Finite Temperatures III. Strong Coupling, Physica A178 (1991) 289-331.
● Multisite Spin Hopping Analysis of Multilevel Dissipative Quantum Tunneling and Coherence at Finite Temperatures IV. The Biased Case, Physica A179 (1991) 81-102.
● Dissipatieve Quantum Processen (College Syllabus, Universiteit van Amsterdam, 1991).
● Dissipative Quantum Processes, in: Proc. Conf. Path. Integrals in Physics, Bangkok, 1993, edited by V.Sa-yakanit et al. (World Scientific, Singapore, 1994) p.137-153.
● Effective Dipole-Radiation-field Theory: I. One-dimensional Oscillator beyond Standard Coupling, Intern. J. Mod. Phys. B8 (1994) 2307-2325.
● Multilevel Tunneling and Coherence: Dissipative Spin-Hopping Dynamics at Finite Temperatures: Erratum, Physical Review E50 (1994) 4265.
● Multisite Spin-Hopping Analysis of Multilevel Dissipative Quantum Tunneling and Coherence at Finite Temperatures: Erratum, Physica A210 (1994) 507-508.
● & A. Maassen van den Brink, Temperature Relaxation and the Kapitza Boundary Resistance Paradox, Physical Review B51 (1995) 17842-17847.
● & A. Maassen van den Brink, Local Temperature Measurement and Kapitza Boundary Resistance, in: Proc. Phonons 95 Intern. Conf., Sapporo, Physica B219&220 (1996) 656-659.
● & A. Maassen van den Brink, Two- and Four-point Kapitza Resistance between Harmonic Solids, Physica A226 (1996) 64-116.
● Effective Dipole-Radiation-field Theory: II. All Orders beyond Standard Coupling, Intern. J. Mod. Phys. B10 (1996) 1211-1225.
● & A. Maassen van den Brink, Nonequilibrium Thermodynamics of Josphson Devices, Mod. Phys. Lett. B10 (1996) 903-908.
● & A. Maassen van den Brink, Josephson-Junction Thermodynamics and the Superducting Phase Transition, Physical Review B55 (1997) R8697-8700.
● & A. Maassen van den Brink, Superconducting Correlations and the Thermodynamics of Josephson Junctions, Physica A237 (1997) 471-514.
● Multilevel Mesoscopic Tunneling, in: Tunneling and its Implications, Edited by D. Mugnai, A. Ranfagni, and L.S. Schulman (World Scientific, Singapore, 1997) p. 66-79.
● Effective Dipole-Radiation Field Theory: III. Three-Dimensional Oscillator, Intern. J. Mod. Phys. B12 (1998) 965-987.
● & A. Maassen van den Brink, Nonequilibrium Thermodynamics of Mesoscopic Systems, J. Supercond. 12 (1999) p. 719-725.
● & A. Maassen van den Brink, Quantum thermometry and Kapitza resistance, in: Transfer Processes in Low-Dimensional Systems, Memorial Book for A.A. Ovchinnikov and A.I. Larkin, Edited by YU.I. Dahnovsky, V.D. Krevchik, V.Ya. Krivnov, M.B. Semenov, and K. Yamamoto (UT Research
Institute Press, Tokyo, 2005) p. 302-307.
● Multilevel macroscopic quantum tunneling: coherence and dissipation, in: A.I. Larkin Memorial Book, Edited by M.B. Semenov et al. (Moscow State University, Moscow, 2009) Vol.II, p. 13-27 (Russian).
● Multilevel macroscopic quantum tunneling: coherence and dissipation, in: Controllable dissipative tunneling. Tunnel transport in low-dimensional systems, Edited by A.J.Leggett (Fizmatlit, Moscow, 2012) p. 314-326.
HYDRODYNAMIC TURBULENCE:
● & I. Oppenheim, Two-dimensional Random Walk Description of Fluid Flow in the Presence of a Wall: the Origin of Stick versus Slip Boundary Conditions in the Continuum Limit, Physica 117A (1983) 1-16.
● Sliding Friction in Viscous Hydrodynamics: the Rough Surface as Vorticity Source, Mod. Phys. Lett. B3 (1989) 393-397.
● & G. de Leeuw, S.E. Larsen, P.G. Mestayer, A.M.J. van Eijk, A. Zoubiri, P. Hummelshøj and N.O. Jensen, Aerosols in the Marine Atmospheric Surface Layer: Production, Transport and Deposition, Eurotrac Annual Report 1991 (1992) part 3, section II: p. 61-67.
● & G. de Leeuw, Bubble Excitation of Surface Waves and Aerosol Droplet Production: A Simple Dynamical Model, J. Geophys. Res. 98 (1993) 10223-10232.
● & G. de Leeuw and A. Maassen van den Brink, Kubo-Anderson Mixing in the Turbulent Boundary Layer, Mod. Phys. Lett. B8 (1994) 1655-1660.
● & G. de Leeuw and A. Maassen van den Brink, Nonlocal Stochastic Mixing-length Theory and the Velocity Profile in the Turbulent Boundary Layer, Physica A218 (1995) 335-374.
● From Microscopia to Macroscopia: An Educated “Game of Chance” in Physics, in: “Chance and Uncertainty”, Edited by H.W. Capel et al. (Vossiuspers/AUP, Amsterdam, 1995) p. 87-105.
● & G. de Leeuw and A. Maassen van den Brink, Stochastic Theory of Turbulence Mixing by Finite Eddies in the Turbulent Boundary Layer, in: Advances in Turbulence V, Proc.ETC-5, Siena 1994, Edited by R. Benzi et al. (Kluwer, Dordrecht, 1995) p. 100-104.
● & G. de Leeuw and A. Maassen van den Brink, Boundary Layer Turbulence as a Kangaroo Process, Physical Review E52 (1995) 2549-2558.
● & G. de Leeuw and A. Maassen van den Brink, Nonlocal Mixing in the Turbulent Boundary-Layer, Ann. Geophysicae Vol. 14, Part II/Suppl. II (1996) p. C608.
● & A.M.J. van Eijk, Enhancement of Finite Reynolds Number Effects in the Turbulent Boundary-Layer due to Inner-Outer Sublayer Interaction, in: Advances in Turbulence VI, Proc. ETC-6, Lausanne, Edited by P.A. Monkewitz et al. (Kluwer, Dordrecht, 1996) p. 63-64.
● & G. de Leeuw and A. Maassen van den Brink, A Kangaroo-Process Mixing Model of Boundary-Layer Turbulence, in: Turbulence Modeling and Vortex Dynamics, Edited by O. Boratav, A. Eden, and A. Erzan, Lecture Notes in Physics, Vol. 491 (Springer-Verlag, Berlin, 1997) p. 223-237.
● Towards a Theory of Turbulent Shear Flow?, in: Turbulence Modeling and Vortex Dynamics, Edited by O. Boratav, A. Eden, and A. Erzan, Lecture Notes in Physics, Vol. 491 (Springer-Verlag, Berlin, 1997) p. 238-241.
● & A.M.J. van Eijk, Enhancement of Finite Reynolds Number Effects: Inner-Outer Sublayer Interaction in the Turbulent Boundary Layer, App. Sc. Res. 57 (1997) 211-221.
● & A.M.J. van Eijk, G. de Leeuw and G.J. Kunz, Propagation of Electro-Optical Radiation in the Maritime Boundary-Layer, in: Propagation Electromagnétique dans l'Atmospère (Société des Electriciens et des Electroniciens, Rennes, 1997) p. 177-181.
● Thermal Vorticity Dynamics in Turbulent Shear Flow, Mod. Phys. Lett. B12 (1998) 193-195.
● Dynamics of Inertial-Convective Vorticity in Wall-Bounded Turbulent Flow, in: STATPHYS 20 Book of Abstracts, Edited by A.Gervois et al. (Unesco/Sorbonne, Paris, 1998) PO05/28.
● Theory of turbulent heat flux, Mod. Phys. Lett. B13 (1999) 625-629.
● Theory of turbulent shear stress, Mod. Phys. B14 (2000) 781-784.
● Theory of buoyancy in turbulent shear flow, Mod. Phys. Lett. B15 (2001) 989-992.
● Theory of turbulence: anomalous thermal flux spectrum, Mod. Phys. Lett. B16 (2002) 491-495.
● Theory of inertial range scaling in fully developed turbulence, Physica A361 (2005) 1-10.
● Turbulence temperature spectra: scaling theory, Physica A 370 (2006) 275-278.
● Theory of hydrodynamic turbulence: External scales and irrotational fields, in: Progress in Statistical Mechanics Research, Edited by J.S. Moreno (Nova Science Publishers, New York, 2008) p. 349-372.
● Turbulence: Large-scale sweeping and the emergence of small-scale Kolmogorov spectra, Physical
Review E 84, 026302 (2011) 1-10.
● Mathematical Modelling of Hydrodynamic Turbulence: Large Scale Sweeping and the Emergence of Small Scale Kolmogorov Spectra, in: Mathematical Modelling, Edited by C.R.Brennan (Nova Science Publishers, New York, 2012) p. 351-425.
Prof. dr ir Hans Dekker
Institute for Theoretical Physics
University of Amsterdam
Science Park 904
1098 XH Amsterdam
and
Private Institute for Advanced Study
Résidence Le Jardin
1016 XA Amsterdam
h.dekker@uva.nl
MISCELLANEOUS TOPICS:
● A new method of measuring the axial field distribution in a superconducting election lens by means of the Faraday effect, J. Phys. E: Sc. Instr. 5 (1972) 368-372
● Edge Effect Measurements in a Reverberation Room, J. Sound and Vibr. 32 (1974) 199-202.
● A Simple Mathematical Model of Rodent Population Cycles, J. Math. Biol. 2 (1975) 57-67.
● Synergetica, Intermediair, 31 (1975) 11, 32 (1975) 31.
● Coöperatieve Verschijnselen, Ned. Tijds. Natk. 42 (1976) 20-25.
● Some aspects of a CaF2: Mn Thermoluminescent Dosimeter, Health Physics, 30 (1976) 399-401.
● Coöperatieve Verschijnselen in Complexe Systemen, TNO Project 4, 6 (1976) 239-243.
● An Unconventional Calculation of Gaussian Integrals, Simon Stevin 50 (1976) 145-153.
● On the Master Equation Approach to Rodent Population Cycles, General Systems, Vol. XXII (1977) 113-118.
● Synergetica, Winkler Prins Technische Encyclopedie, Deel 6, p. 150-151. (Elsevier, Amsterdam/ Brussel, 1978).
● On the Concept of Separable Infinite Matrices, Simon Stevin 53 (1979) 231-237.
● Long-time Tail in Velocity Correlations in a One-dimensional Rayleigh Gas, Phys. Lett. 88A (1982) 21-25.
● Zekere Beperkingen, Oratie Universiteit van Amsterdam 1992 (Printed Edition: FEL-TNO, Den Haag) p. 1-23.
● Toeval in de fysica: Van wanorde tot struktuur, Magazine v/d Faculteit der Wijsbegeerte, Vrije Universiteit Amsterdam (Themanummer/ Proceedings Openingsconf. '95), maart 1996.
● Met die Combino komt het niet meer goed, Deel 1, in: Het Parool, 1 juli 2004.
● Met die Combino komt het niet meer goed, Deel 2, in: Het Parool, 2 juli 2004.
● Combino klinkt alsof een tank voorbij dendert, in: Het Parool, 15 september 2004.
● Decibelmetingen Combino trams GVB Amsterdam/Rapportage 2004, www.baluw.nl/combino.
● Decibelmetingen Combino trams GVB Amsterdam/Rapportage 2005, www.baluw.nl/combino.
● Vibrational Dynamics of modern lightrail modules, Arch. Appl. Mech. 77 (2007) 849-859.
● Vibrational resonances of nonrigid vehicles: Polygonization and ripple patterns, Appl. Math. Modelling 33 (2009) 1349-1355.
● A model for vibrational effects of nonrigid vehicles, Multidisc. Modeling in Materials and Structures 5 (2009) 243-246.
● Self-gravitation of massive charge and the Einstein-Maxwell electron radius, http://arXiv.org/physics.gen-ph/1408.4796v1 (2014) 1-12.
● Novel exact charged mass distribution in classical field theory and the notion of point-like elementary charge, http://arXiv.org/physics.gen-ph/1408.4796v2 (2016) 1-6.
● Pointlike electric charge in classical field theory, http://arXiv.org/physics.gen-ph/1408.4796v3 (2018) 1-13; Journal of Advances in Physics, Volume 14, Issue 2 (2018) 5611-5623 [https://doi.org/10.24297/JAP.v14i2.7596] [https://researchgate.net/publication/327576134]