Djokic, V. G., Dankers, V., & Shutova, E. (2021). Episodic memory demands modulate novel metaphor use during event narration. In 43rd Annual Meeting of the Cognitive Science Society (CogSci 2021): Comparative Cognition Animal Minds : Vienna, Austria, 26-29 July 2021 (Vol. 5, pp. 2904-2909). (Proceedings of the Annual Meeting of the Cognitive Science Society; Vol. 43). Cognitive Science Society. https://escholarship.org/uc/item/2qx166t9[details]
Djokic, V. G., Shutova, E., & Fiebrink, R. (2021). MetaVR: Understanding metaphors in the mind and relation to emotion through immersive, spatial interaction. In CHI '21: Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems : May 8-13, 2021, online virtual conference (originally, Yokohama, Japan) Article 185 Association for Computing Machinery. https://doi.org/10.1145/3411763.3451565[details]
2020
Djokic, V. G., & Shutova, E. (2020). Modelling Brain Activity Associated with Metaphor Processing with Distributional Semantic Models. In 42nd Annual Meeting of the Cognitive Science Society (CogSci 2020): Developing a Mind: Learning in Humans, Animals, and Machines : online, 29 July-1 August 2020 (Vol. 5, pp. 3118-3124). Cognitive Science Society. https://cognitivesciencesociety.org/cogsci20/papers/0779/[details]
Djokic, V. G., Malliard, J., Bulat, L., & Shutova, E. (2020). Decoding brain activity associated with literal and metaphoric sentence comprehension using distributional semantic models. Transactions of the Association of Computational Linguistics, 8, 231-246. https://doi.org/10.1162/tacl_a_00307[details]
Djokic, V. G., Maillard, J., Bulat, L., & Shutova, E. (2019). Modeling affirmative and negated action processing in the brain with lexical and compositional semantic models. In A. Korhonen, D. Traum, & L. Màrquez (Eds.), The 57th Annual Meeting of the Association for Computational Linguistics: ACL 2019 : proceedings of the conference : July 28-August 2, 2019, Florence, Italy (pp. 5155-5165). The Association for Computational Linguistics. https://doi.org/10.18653/v1/P19-1508[details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.