Giulianelli, M., Baan, J., Aziz, W., Fernández, R., & Plank, B. (2023). What Comes Next? Evaluating Uncertainty in Neural Text Generators Against Human Production Variability. In H. Bouamar, J. Pino, & K. Bali (Eds.), The 2023 Conference on Empirical Methods in Natural Language Processing: EMNLP 2023 : Proceedings of the Conference : December 6-10, 2023 (pp. 14349–14371). Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.emnlp-main.887[details]
Baan, J., Aziz, W., Plank, B., & Fernández, R. (2022). Stop Measuring Calibration When Humans Disagree. In Y. Goldberg, Z. Kozareva, & Y. Zhang (Eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: December 7-11, 2022, Abu Dhabi, United Arab Emirates (pp. 1892–1915). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.emnlp-main.124[details]
Eikema, B., & Aziz, W. (2022). Sampling-Based Approximations to Minimum Bayes Risk Decoding for Neural Machine Translation. In Y. Goldberg, Z. Kozareva, & Y. Zhang (Eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: December 7-11, 2022, Abu Dhabi, United Arab Emirates (pp. 10978-10993). Association for Computational Linguistics. https://doi.org/10.48550/arXiv.2108.04718, https://doi.org/10.18653/v1/2022.emnlp-main.754[details]
Farinhas, A., Ferreira Aziz, W., Niculae, V., & Martins, A. F. T. (2022). Sparse Communication via Mixed Distributions. In International Conference on Learning Representations https://openreview.net/forum?id=WAid50QschI
2021
Correia, G., Niculae, V., Aziz, W., & Martins, A. (2021). Efficient Marginalization of Discrete and Structured Latent Variables via Sparsity. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 15, pp. 11789-11802). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/887caadc3642e304ede659b734f79b00-Abstract.html[details]
De Cao, N., Aziz, W., & Titov, I. (2021). Editing Factual Knowledge in Language Models. In M.-C. Moens, X. Huang, L. Specia, & S. W. Sih (Eds.), 2021 Conference on Empirical Methods in Natural Language Processing: EMNLP 2021 : proceedings of the conference : November 7-11, 2021 (pp. 6491-6506). The Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.emnlp-main.522[details]
De Cao, N., Aziz, W., & Titov, I. (2021). Highly Parallel Autoregressive Entity Linking with Discriminative Correction. In M.-C. Moens, X. Huang, L. Specia, & S. W. Yih (Eds.), 2021 Conference on Empirical Methods in Natural Language Processing: EMNLP 2021 : proceedings of the conference : November 7-11, 2021 (pp. 7662-7669). The Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.emnlp-main.604[details]
Ataman, D., Ferreira Aziz, W., & Birch, A. (2020). A Latent Morphology Model for Open-Vocabulary Neural Machine Translation. In International Conference on Learning Representations https://openreview.net/pdf?id=BJxSI1SKDH
De Cao, N., Schlichtkrull, M., Aziz, W., & Titov, I. (2020). How do Decisions Emerge across Layers in Neural Models? Interpretation with Differentiable Masking. In B. Webber, T. Cohn, Y. He, & Y. Liu (Eds.), 2020 Conference on Empirical Methods in Natural Language Processing: EMNLP 2020 : proceedings of the conference : November 16-20, 2020 (pp. 3243–3255). The Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.emnlp-main.262[details]
Eikema, B., & Aziz, W. (2020). Is MAP Decoding All You Need? The Inadequacy of the Mode in Neural Machine Translation. In D. Scott, N. Bel, & C. Zong (Eds.), The 28th International Conference on Computational Linguistics: COLING 2020 : Proceedings of the Conference : December 8-13, 2020, Barcelona, Spain (Online) (pp. 4506–4520). International Committee on Computational Linguistics. https://doi.org/10.18653/v1/2020.coling-main.398[details]
Pelsmaeker, T., & Aziz, W. (2020). Effective Estimation of Deep Generative Language Models. In D. Jurafsky, J. Chai, N. Schluter, & J. Tetreault (Eds.), The 58th Annual Meeting of the Association for Computational Linguistics: ACL 2020 : Proceedings of the Conference : July 5-10, 2020 (pp. 7220-7236). The Association for Computational Linguistics. http://10.18653/v1/2020.acl-main.646[details]
Bastings, J., Aziz, W., & Titov, I. (2019). Interpretable Neural Predictions with Differentiable Binary Variables. In A. Korhonen, D. Traum, & L. Màrquez (Eds.), The 57th Annual Meeting of the Association for Computational Linguistics: ACL 2019 : proceedings of the conference : July 28-August 2, 2019, Florence, Italy (pp. 2963-2977). The Association for Computational Linguistics. https://doi.org/10.18653/v1/P19-1284[details]
Calixto, I., Rios, M., & Aziz, W. (2019). Latent Variable Model for Multi-modal Translation. In A. Korhonen, D. Traum, & L. Màrquez (Eds.), The 57th Annual Meeting of the Association for Computational Linguistics: ACL 2019 : proceedings of the conference : July 28-August 2, 2019, Florence, Italy (pp. 6392–6405). The Association for Computational Linguistics. https://doi.org/10.18653/v1/P19-1642[details]
De Cao, N., Aziz, W., & Titov, I. (2019). Question answering by reasoning across documents with graph convolutional networks. In J. Burstein, C. Doran, & T. Solorio (Eds.), The 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: NAACL HLT 2019 : proceedings of the conference : June 2-June 7, 2019 (Vol. 1, pp. 2306-2317). The Association for Computational Linguistics. https://doi.org/10.18653/v1/N19-1240[details]
De Cao, N., Ferreira Aziz, W., & Titov, I. A. (2019). Block Neural Autoregressive Flow. In Proceedings of the the 35th Uncertainty in Artificial Intelligence Conference AUAI Press. http://auai.org/uai2019/proceedings/papers/511.pdf
Eikema, B., & Aziz, W. (2019). Auto-Encoding Variational Neural Machine Translation. In I. Augenstein, S. Gella, S. Ruder, K. Kann, J. Welbl, A. Conneau, X. Ren, & M. Rei (Eds.), The 4th Workshop on Representation Learning for NLP (RepL4NLP-2019): ACL 2019 : proceedings of the workshop : August 2, 2019, Florence, Italy (pp. 124–141). The Association for Computational Linguistics. https://doi.org/10.18653/v1/W19-4315[details]
Rios, M., Aziz, W., & Sima'an, K. (2018). Deep Generative Model for Joint Alignment and Word Representation. In M. Walker, H. Ji, & A. Stent (Eds.), NAACL-HLT 2018 : The 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: proceedings of the conference : June 1-June 6, 2018, New Orleans, Louisiana (Vol. 1, pp. 1011-1023). The Association for Computational Linguistics. https://doi.org/10.18653/v1/N18-1092[details]
Schulz, P., Aziz, W., & Cohn, T. (2018). A Stochastic Decoder for Neural Machine Translation. In I. Gurevych, & Y. Miyao (Eds.), ACL 2018 : The 56th Annual Meeting of the Association for Computational Linguistics: proceedings of the conference : July 15-20, 2018, Melbourne, Australia (Vol. 1, pp. 1243-1252). The Association for Computational Linguistics. https://doi.org/10.18653/v1/P18-1115[details]
Bastings, J., Titov, I., Aziz, W., Marcheggiani, D., & Sima'an, K. (2017). Graph Convolutional Encoders for Syntax-aware Neural Machine Translation. In M. Palmer, R. Hwa, & S. Riedel (Eds.), The Conference on Empirical Methods in Natural Language Processing: proceedings of the conference : EMNLP 2017 : September 9-11, 2017, Copenhagen, Denmark (pp. 1957-1967). Association for Computational Linguistics. https://doi.org/10.18653/v1/D17-1209[details]
Daiber, J., Stanojević, M., Aziz, W., & Sima'an, K. (2016). Examining the Relationship between Preordering and Word Order Freedom in Machine Translation. In Proceedings of the First Conference on Machine Translation: Berlin, Germany, August 11-12, 2016 (Vol. 1, pp. 118-130). Association for Computational Linguistics. https://doi.org/10.18653/v1/W16-2213[details]
Schulz, P., & Aziz, W. (2016). Fast Collocation-Based Bayesian HMM Word Alignment. In Y. Matsumoto, & R. Prasad (Eds.), Proceedings of COLING 2016: technical papers: the 26th International Conference on Computational Linguistics : Osaka, Japan, December 11-17 2016 (pp. 3146-3155). The COLING 2016 Organizing Committee. http://www.aclweb.org/anthology/C/C16/C16-1296[details]
Schulz, P., Aziz, W., & Sima'an, K. (2016). Word Alignment without NULL words. In K. Erk, & N. A. Smith (Eds.), The 54th Annual Meeting of the Association for Computational Linguistics : ACL 2016: proceedings of the conference : August 7-12, 2016, Berlin Germany (Vol. 2, pp. 169-174). Association for Computational Linguistics. https://doi.org/10.18653/v1/P16-2028[details]
Aziz, W., Dymetman, M., & Specia, L. (2014). Exact Decoding for Phrase-Based Statistical Machine Translation. In A. Moschitti, B. Pang, & W. Daelemans (Eds.), EMNLP 2014: the 2014 Conference on Empirical Methods In Natural Language Processing: proceedings of the conference: October 25-29, 2014, Doha, Qatar (pp. 1237-1249). Association for Computational Linguistics. http://www.aclweb.org/anthology/D14-1131[details]
De Cao, N., & Ferreira Aziz, W. (2020). The Power Spherical distribution. Paper presented at ICML 2020 workshop INNF+: Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models. https://arxiv.org/abs/2006.04437
Prijs / subsidie
Eikema, B. & Aziz, W. (2020). COLING Best Paper Award.
2024
De Cao, N. (2024). Entity centric neural models for natural language processing. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Bastings, J. (2020). A tale of two sequences: Interpretable and linguistically-informed deep learning for natural language processing. [Thesis, fully internal, Universiteit van Amsterdam]. Institute for Logic, Language and Computation. [details]
Del Tredici, M. (2020). Linguistic variation in online communities: A computational perspective. [Thesis, fully internal, Universiteit van Amsterdam]. Institute for Logic, Language and Computation. [details]
Schulz, P. (2020). Latent variable models for machine translation and how to learn them. [Thesis, fully internal, Universiteit van Amsterdam]. Institute for Logic, Language and Computation. [details]
Daiber, J. (2018). Typologically robust statistical machine translation: Understanding and exploiting differences and similarities between languages in machine translation. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Stanojević , M. (2017). Permutation forests for modeling word order in machine translation. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.