Voor de beste ervaring schakelt u JavaScript in en gebruikt u een moderne browser!
Je gebruikt een niet-ondersteunde browser. Deze site kan er anders uitzien dan je verwacht.

Dr. E. (Stratis) Gavves

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Informatics Institute

Bezoekadres
  • Science Park 904
Postadres
  • Postbus 94323
    1090 GH Amsterdam
Contactgegevens
  • Publicaties

    2022

    • Schirris, Y., Engelaer, M., Panteli, A., Horlings, H. M., Gavves, E., & Teuwen, J. J. B. (2022). WeakSTIL: Weak whole-slide image level stromal tumor infiltrating lymphocyte scores are all you need. In SPIE Medical Imaging
    • Zoetmulder, R., Gavves, E., Caan, M., & Marquering, H. (2022). Domain and Task Specific Transfer Learning For Medical Segmentation Tasks. Computer Methods and Programs in Biomedicine, 214, [106539]. https://doi.org/10.1016/j.cmpb.2021.106539

    2021

    • Chen, Y., Fernando, B., Bilen, H., Mensink, T. E. J., & Gavves, E. (2021). Neural Feature Matching in Implicit Neural Representations. In International Conference on Machine Learning
    • Gavves, E., Tao, R., Gupta, D. K., & Smeulders, A. W. M. (2021). Model Decay in Long-Term Tracking. In Proceedings of ICPR 2020: 25th International Conference on Pattern Recognition : Milan, 10-15 January 2021 (pp. 2685-2692). IEEE. https://doi.org/10.1109/ICPR48806.2021.9412648 [details]
    • Gupta, D. K., Arya, D., & Gavves, E. (2021). Rotation Equivariant Siamese Networks for Tracking. In Conference on Computer Vision and Pattern Recognition
    • Gupta, D. K., Gavves, E., & Smeulders, A. W. M. (2021). Tackling Occlusion in Siamese Tracking with Structured Dropouts. In Proceedings of ICPR 2020: 25th International Conference on Pattern Recognition : Milan, 10-15 January 2021 (pp. 5804-5811). IEEE. https://doi.org/10.1109/ICPR48806.2021.9412120 [details]
    • Kilickaya, M., Hussein, N., Gavves, E., & Smeulders, A. (2021). Self-Selective Context for Interaction Recognition. In Proceedings of ICPR 2020: 25th International Conference on Pattern Recognition : Milan, 10-15 January 2021 (pp. 2280-2287). IEEE. https://doi.org/10.1109/ICPR48806.2021.9413326 [details]
    • Kofinas, M., Nagaraja, N. S., & Gavves, E. (2021). Roto-translated Local Coordinate Frames For Interacting Dynamical Systems. In Advances in Neural Information Processing Systems
    • Liao, S., Gavves, E., Oh, C., & Snoek, C. G. M. (2021). Quasibinary Classifier for Images with Zero and Multiple Labels. In Proceedings of ICPR 2020: 25th International Conference on Pattern Recognition : Milan, 10-15 January 2021 (pp. 8743-8750). IEEE. https://doi.org/10.1109/ICPR48806.2021.9412933 [details]
    • Lippe, P., & Gavves, E. (2021). Categorical Normalizing Flows via Continuous Transformations. In International Conference on Learning Representations https://openreview.net/pdf?id=-GLNZeVDuik
    • Panteli, A., Teuwen, J., Horlings, H., & Gavves, E. (2021). Sparse-shot Learning with Exclusive Cross-Entropy for Extremely Many Localisations. In 2021 IEEE/CVF International Conference on Computer Vision: proceedings : ICCV 2021 : 11-17 October 2021, virtual event (pp. 2793-2803). (International Conference on Computer Vision; Vol. 18). IEEE Computer Society. https://doi.org/10.1109/ICCV48922.2021.00281 [details]
    • Pervez, A. A., & Gavves, E. (2021). Spectral Smoothing Unveils Phase Transitions in Hierarchical Variational Autoencoders. In International Conference on Machine Learning
    • Shi, Z., Chen, Y., Gavves, E., Mettes, P., & Snoek, C. G. M. (2021). Unsharp Mask Guided Filtering. IEEE Transactions on Image Processing, 30, 7472-7485. https://doi.org/10.1109/TIP.2021.3106812 [details]
    • Zoetmulder, R., Konduri, P. R., Obdeijn, I. V., Gavves, E., Išgum, I., Majoie, C. B. L. M., Dippel, D. W. J., Roos, Y. B. W. E. M., Goyal, M., Mitchell, P. J., Campbell, B. C. V., Lopes, D. K., Reimann, G., Jovin, T. G., Saver, J. L., Muir, K. W., White, P., Bracard, S., Chen, B., ... Marquering, H. A. (2021). Automated final lesion segmentation in posterior circulation acute ischemic stroke using deep learning. Diagnostics, 11(9), [1621]. https://doi.org/10.3390/diagnostics11091621 [details]

    2020

    2019

    • Chen, Y., Mensink, T. E. J., & Gavves, E. (2019). 3D Neighborhood Convolution: Learning Depth-Aware Features for RGB-D and RGB Semantic Segmentation. In International Conference on 3D Vision https://arxiv.org/abs/1910.01460
    • Davidson, T. R., Tomczak, J. M., & Gavves, E. (2019). Increasing Expressivity of a Hyperspherical VAE. In Advances in Neural Information Processing Systems, Workshop on Bayesian Deep Learning NIPS.
    • Gupta, D. K., de Bruijn, N., Panteli, A., & Gavves, E. (2019). Tracking-Assisted Segmentation of Biological Cells. In Advances in Neural Information Processing Systems, Workshop on Medical Imaging NIPS.
    • Hussein, N., Gavves, E., & Smeulders, A. W. M. (2019). Timeception for Complex Action Recognition. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition: proceedings : 16-20 June 2019, Long Beach, California (pp. 254-263). (CVPR). Los Alamitos, CA: IEEE Computer Society. https://doi.org/10.1109/CVPR.2019.00034 [details]
    • Kristan, M., Matas, J., Leonardis, A., Felsberg, M., Pflugfelder, R., Kämäräinen, J-K., ... Ni, Z. (2019). The Seventh Visual Object Tracking VOT2019 Challenge Results. In 2019 International Conference on Computer Vision, Workshops: proceedings : 27 October-2 November 2019, Seoul, Korea (pp. 2206-2241). Los Alamitos, California: IEEE Computer Society. https://doi.org/10.1109/ICCVW.2019.00276 [details]
    • Liao, S., Gavves, E., & Snoek, C. G. M. (2019). Spherical Regression: Learning Viewpoints, Surface Normals and 3D Rotations on n-Spheres. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition: proceedings : 16-20 June 2019, Long Beach, California (pp. 9751-9759). (CVPR). Los Alamitos, CA: IEEE Computer Society. https://doi.org/10.1109/CVPR.2019.00999 [details]
    • Louizos, C., Reisser, M., Blankevoort, T., Gavves, E., & Welling, M. (2019). Relaxed Quantization for Discretized Neural Networks. In ICLR 2019: International Conference on Learning Representations : New Orleans, Louisiana, United States, May 6-May 9, 2019 OpenReview. [details]
    • O'Connor, P., Gavves, E., & Welling, M. (2019). Initialized Equilibrium Propagation for Backprop-Free Training. In ICLR 2019: International Conference on Learning Representations : New Orleans, Louisiana, United States, May 6-May 9, 2019 OpenReview. [details]
    • O'Connor, P., Gavves, E., & Welling, M. (2019). Training a Spiking Neural Network with Equilibrium Propagation. Proceedings of Machine Learning Research, 89, 1516-1523. http://proceedings.mlr.press/v89/o-connor19a.html [details]
    • Samson, L., van Noord, N., Booij, O., Hofmann, M., Gavves, E., & Ghafoorian, M. (2019). I Bet You Are Wrong: Gambling Adversarial Networks for Structured Semantic Segmentation. In 2019 International Conference on Computer Vision, Workshops: proceedings : 27 October-2 November 2019, Seoul, Korea (pp. 951-960). Los Alamitos, California: IEEE Computer Society. https://doi.org/10.1109/ICCVW.2019.00124 [details]
    • Shkodrani, S., Hofmann, M., & Gavves, E. (2019). Dynamic Adaptation on Non-Stationary Visual Domains. In L. Leal-Taixé, & S. Roth (Eds.), Computer Vision – ECCV 2018 Workshops: Munich, Germany, September 8-14, 2018 : proceedings (Vol. II, pp. 158-171). (Lecture Notes in Computer Science; Vol. 11130). Springer. https://doi.org/10.1007/978-3-030-11012-3_12 [details]
    • van der Heiden, T., Nagaraja, N. S., Weiss, C., & Gavves, E. (2019). SafeCritic: Collision-Aware Trajectory Prediction. In British Machine Vision Conference Workshop

    2018

    • Bilen, H., Fernando, B., Gavves, E., & Vedaldi, A. (2018). Action recognition with dynamic image networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(12), 2799-2813. https://doi.org/10.1109/TPAMI.2017.2769085 [details]
    • Georgoulis, S., Rematas, K., Ritschel, T., Gavves, E., Fritz, M., Van Gool, L., & Tuytelaars, T. (2018). Reflectance and natural illumination from single-material specular objects using deep learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(8), 1932-1947. https://doi.org/10.1109/TPAMI.2017.2742999 [details]
    • Ghodrati, A., Gavves, E., & Snoek, C. G. M. (2018). Video Time: Properties, Encoders and Evaluation. In British Machine Vision Conference 2018: BMVC 2018, Newcastle, UK, September 3-6, 2018 [859] BMVA Press. [details]
    • Li, Z., Gavrilyuk, K., Gavves, E., Jain, M., & Snoek, C. G. M. (2018). VideoLSTM Convolves, Attends and Flows for Action Recognition. Computer Vision and Image Understanding, 166, 41-50. https://doi.org/10.1016/j.cviu.2017.10.011 [details]
    • Liao, S., Gavves, E., & Snoek, C. G. M. (2018). Searching and Matching Texture-free 3D Shapes in Images. In ICMR'18: proceedings of the 2018 ACM International Conference on Multimedia Retrieval : June 11-14, 2018, Yokohama, Japan (pp. 326-334). New York, NY: The Association for Computing Machinery. https://doi.org/10.1145/3206025.3206057 [details]
    • O'Connor, P. E., Gavves, E., & Welling, M. (2018). Initialized Equilibrium Propagation for Backprop-Free Training. In International Conference on Machine Learning: Workshop on Credit Assignment in Deep Learning and Deep Reinforcement Learning
    • O'Connor, P. E., Gavves, E., & Welling, M. (2018). Temporally Efficient Deep Learning with Spikes. In International Conference on Learning Representations OpenReview.
    • Oh, C., Gavves, E., & Welling, M. (2018). BOCK: Bayesian Optimization with Cylindrical Kernels. Proceedings of Machine Learning Research, 80, 3868-3877. http://proceedings.mlr.press/v80/oh18a.html [details]
    • Scheepers, T., Kanoulas, E., & Gavves, E. (2018). Improving Word Embedding Compositionality using Lexicographic Definitions. In The Web Conference 2018: companion of the World Wide Web Conference WWW2018 : April 23-27, 2018, Lyon, France (pp. 1083-1093). [Geneva]: International World Wide Web Conferences Steering Committee. https://doi.org/10.1145/3178876.3186007 [details]
    • Valmadre, J., Bertinetto, L., Henriques, J. F., Tao, R., Vedaldi, A., Smeulders, A. W. M., Torr, P. H. S., & Gavves, E. (2018). Long-Term Tracking in the Wild: A Benchmark. In V. Ferrari, M. Hebert, C. Sminchisescu, & Y. Weiss (Eds.), Computer Vision – ECCV 2018: 15th European Conference, Munich, Germany, September 8-14, 2018: proceedings (Vol. III, pp. 692-707). (Lecture Notes in Computer Science; Vol. 11207). Springer. https://doi.org/10.1007/978-3-030-01219-9_41 [details]

    2017

    • Fernando, B., Bilen, H., Gavves, E., & Gould, S. (2017). Self-Supervised Video Representation Learning With Odd-One-Out Networks. In 30th IEEE Conference on Computer Vision and Pattern Recognition: CVPR 2017 : 21-26 July 2016, Honolulu, Hawaii : proceedings (pp. 5729-5738). IEEE. https://doi.org/10.1109/CVPR.2017.607 [details]
    • Fernando, B., Gavves, E., Oramas M., J., Ghodrati, A., & Tuytelaars, T. (2017). Rank Pooling for Action Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 773-787. https://doi.org/10.1109/TPAMI.2016.2558148 [details]
    • Hussein, N., Gavves, E., & Smeulders, A. W. M. (2017). Unified Embedding and Metric Learning for Zero-Exemplar Event Detection. In 30th IEEE Conference on Computer Vision and Pattern Recognition: CVPR 2017 : 21-26 July 2016, Honolulu, Hawaii : proceedings (pp. 2087-2096). Piscataway, NJ: IEEE. https://doi.org/10.1109/CVPR.2017.225 [details]
    • Li, Z., Tao, R., Gavves, E., Snoek, C. G. M., & Smeulders, A. W. M. (2017). Tracking by Natural Language Specification. In 30th IEEE Conference on Computer Vision and Pattern Recognition: CVPR 2017 : 21-26 July 2016, Honolulu, Hawaii : proceedings (pp. 7350-7358). Piscataway, NJ: IEEE. https://doi.org/10.1109/CVPR.2017.777 [details]

    2016

    • Bilen, H., Fernando, B., Gavves, E., Vedaldi, A., & Gould, S. (2016). Dynamic Image Networks for Action Recognition. In Proceedings 29th IEEE Conference on Computer Vision and Pattern Recognition : CVPR 2016: 26 June-1 July 2016, Las Vegas, Nevada (pp. 3034-3042). Los Alamitos, California: IEEE Computer Society. https://doi.org/10.1109/CVPR.2016.331 [details]
    • De Geest, R., Gavves, E., Ghodrati, A., Li, Z., Snoek, C., & Tuytelaars, T. (2016). Online Action Detection. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016 : proceedings (Vol. 5, pp. 269-284). (Lecture Notes in Computer Science; Vol. 9909). Cham: Springer. https://doi.org/10.1007/978-3-319-46454-1_17 [details]
    • Rematas, K., Ritschel, T., Fritz, M., Gavves, E., & Tuytelaars, T. (2016). Deep Reflectance Maps. In Proceedings 29th IEEE Conference on Computer Vision and Pattern Recognition : CVPR 2016: 26 June-1 July 2016, Las Vegas, Nevada (pp. 4508-4516). Los Alamitos, California: IEEE Computer Society. https://doi.org/10.1109/CVPR.2016.488 [details]
    • Snoek, C. G. M., Dong, J., Li, X., Wei, Q., Wang, X., Lan, W., Gavves, E., Hussein, N. M. E., Koelma, D. C., & Smeulders, A. W. M. (2016). University of Amsterdam and Renmin University at TRECVID 2016: Searching Video, Detecting Events and Describing Video. In TRECVID Workshop https://www.semanticscholar.org/paper/University-of-Amsterdam-and-Renmin-University-at-Snoek-Dong/d7bbd75e9471dbcb20a04043f8156cb967567f3f
    • Tao, R., Gavves, E., & Smeulders, A. W. M. (2016). Siamese Instance Search for Tracking. In Proceedings 29th IEEE Conference on Computer Vision and Pattern Recognition : CVPR 2016: 26 June-1 July 2016, Las Vegas, Nevada (pp. 1420-1429 ). Los Alamitos, California: IEEE Computer Society. https://doi.org/10.1109/CVPR.2016.158 [details]

    2015

    • Gavves, E., Fernando, B., Snoek, C. G. M., Smeulders, A. W. M., & Tuytelaars, T. (2015). Local Alignments for Fine-Grained Categorization. International Journal of Computer Vision, 111(2), 191-212. https://doi.org/10.1007/s11263-014-0741-5 [details]
    • Gavves, E., Mensink, T., Tommasi, T., Snoek, C. G. M., & Tuytelaars, T. (2015). Active Transfer Learning with Zero-Shot Priors: Reusing Past Datasets for Future Tasks. In Proceedings: 2015 IEEE International Conference on Computer Vision: 11-18 December 2015, Santiago, Chile (pp. 2731-2739). Los Alamitos, CA: IEEE Computer Society. https://doi.org/10.1109/ICCV.2015.313 [details]

    2014

    • Li, Z., Gavves, E., Mensink, T., & Snoek, C. G. M. (2014). Attributes Make Sense on Segmented Objects. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.), Computer Vision – ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014: proceedings (Vol. VI, pp. 350-365). (Lecture Notes in Computer Science; Vol. 8694). Cham: Springer. https://doi.org/10.1007/978-3-319-10599-4_23 [details]
    • Mazloom, M., Gavves, E., & Snoek, C. G. M. (2014). Conceptlets: Selective Semantics for Classifying Video Events. IEEE Transactions on Multimedia, 16(8), 2214-2228. https://doi.org/10.1109/TMM.2014.2359771 [details]
    • Mensink, T., Gavves, E., & Snoek, C. G. M. (2014). COSTA: Co-Occurrence Statistics for Zero-Shot Classification. In Proceedings: 2014 IEEE Conference on Computer Vision and Pattern Recognition: 23-28 June 2014, Columbus, Ohio (pp. 2441-2448). Los Alamitos, California: IEEE Computer Society. https://doi.org/10.1109/CVPR.2014.313 [details]
    • Tao, R., Gavves, E., Snoek, C. G. M., & Smeulders, A. W. M. (2014). Locality in Generic Instance Search from One Example. In Proceedings: 2014 IEEE Conference on Computer Vision and Pattern Recognition: 23-28 June 2014, Columbus, Ohio (pp. 2099-2106). Los Alamitos, California: IEEE Computer Society. https://doi.org/10.1109/CVPR.2014.269 [details]

    2013

    • Gavves, E., Fernando, B., Snoek, C. G. M., Smeulders, A. W. M., & Tuytelaars, T. (2013). Fine-Grained Categorization by Alignments. In 2013 IEEE International Conference on Computer Vision: ICCV 2013 : proceedings: 1-8 December 2013, Sydney, NSW, Australia (pp. 1713-1720). Los Alamitos, California: IEEE Computer Society. https://doi.org/10.1109/ICCV.2013.215 [details]
    • Li, Z., Gavves, E., van de Sande, K. E. A., Snoek, C. G. M., & Smeulders, A. W. M. (2013). Codemaps: Segment, Classify and Search Objects Locally. In 2013 IEEE International Conference on Computer Vision: ICCV 2013 : proceedings: 1-8 December 2013, Sydney, NSW, Australia (pp. 2136-2143). Los Alamitos, California: IEEE Computer Society. https://doi.org/10.1109/ICCV.2013.454 [details]
    • Mazloom, M., Gavves, E., van de Sande, K. E. A., & Snoek, C. G. M. (2013). Searching Informative Concept Banks for Video Event Detection. In ICMR'13: proceedings of the third ACM International Conference on Multimedia Retrieval : April 16-20, 2013, Dallas, Texas, USA (pp. 255-262). New York, NY: Association for Computing Machinery. https://doi.org/10.1145/2461466.2461507 [details]

    2012

    2011

    • Li, X., Gavves, E., Snoek, C. G. M., Worring, M., & Smeulders, A. W. M. (2011). Personalizing automated image annotation using cross-entropy. In MM '11: proceedings of the 2011 ACM Multimedia Conference & Co-Located Workshops: Nov. 28-Dec. 1, 2011, Scottsdale, AZ, USA (pp. 233-242). New York, NY: Association for Computing Machinery. https://doi.org/10.1145/2072298.2072330 [details]

    2010

    • Gavves, E., & Snoek, C. G. M. (2010). Landmark Image Retrieval Using Visual Synonyms. In MM '10: proceedings of the ACM Multimedia 2010 International Conference: October 25-29, 2010, Firenze, Italy (pp. 1123-1126). New York, NY: Association for Computing Machinery. https://doi.org/10.1145/1873951.1874166 [details]
    • Snoek, C. G. M., van de Sande, K. E. A., de Rooij, O., Huurnink, B., Gavves, E., Odijk, D., de Rijke, M., Gevers, T., Worring, M., Koelma, D. C., & Smeulders, A. W. M. (2010). The MediaMill TRECVID 2010 semantic video search engine. In TRECVID 2010 notebook National Institute of Standards and Technology. http://www-nlpir.nist.gov/projects/tvpubs/tv10.papers/mediamill.pdf [details]

    2017

    • Tao, R., Gavves, E., & Smeulders, A. W. M. (2017). Generic mapping for tracking target object in video sequence. (Patent No. US Patent App. 15/192,935).

    2021

    • Lippe, P., & Gavves, E. (2021). Categorical Normalizing Flows via Continuous Transformations. Paper presented at 9th International Conference on Learning Representations, virtual. https://openreview.net/pdf?id=-GLNZeVDuik

    2019

    • Hussein, N., Gavves, E., & Smeulders, A. W. M. (2019). VideoGraph: Recognizing Minutes-Long Human Activities in Videos. Paper presented at 1st Workshop on Graph Based Learning in Computer Vision, Seoul, Korea, Republic of. https://arxiv.org/abs/1905.05143 [details]

    2017

    • Mironenco, M., Kianfar, D., Tran, M. K., Kanoulas, E., & Gavves, E. (2017). Examining Cooperation in Visual Dialog Models.

    2021

    • Hussein, N. M. E. (2021). Aspects of time for recognizing human activities. [details]
    • Liao, S. (2021). Deep learning with 3D and label geometry. [details]

    2020

    • O'Connor, P. (2020). Biologically plausible deep learning: Should airplanes flap their wings?. [details]
    This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications. Log in to Personal Page Publication Selection tool to manage the visibility of your publications on this list.
  • Nevenwerkzaamheden
    • Geen nevenwerkzaamheden