Cléry, F., & van der Geer, G. (2022). Modular Forms of Degree 2 and Curves of Genus 2 in Characteristic 2. International Mathematics Research Notices, [rnaa239]. https://doi.org/10.1093/imrn/rnaa239[details]
Cléry, F., Faber, C., & van der Geer, G. (2020). Concomitants of ternary quartics and vector-valued Siegel and Teichmüller modular forms of genus three. Selecta Mathematica, New Series, 26(4), [55]. https://doi.org/10.1007/s00029-020-00581-7[details]
2019
Cléry, F., Faber, C., & van der Geer, G. (2019). Covariants of binary sextics and modular forms of degree 2 with character. Mathematics of Computation, 88(319), 2423-2441. https://doi.org/10.1090/mcom/3412[details]
2018
van der Geer, G. (2018). Exploring modular forms and the cohomology of local systems on moduli spaces by counting points. In L. Ji, & S-T. Yau (Eds.), Uniformization, Riemann-Hilbert Correspondence, Calabi-Yau Manifolds & Picard-Fuchs Equations (pp. 81-110). (Advanced Lectures in Mathematics; Vol. 42). Boston: International Press of Boston, Inc.. [details]
2017
Cléry, F., Faber, C., & van der Geer, G. (2017). Covariants of binary sextics and vector-valued Siegel modular forms of genus two. Mathematische Annalen, 369(3-4), 1649–1669. https://doi.org/10.1007/s00208-016-1510-2[details]
van der Geer, G., & Kouvidakis, A. (2017). The Cycle Classes of Divisorial Maroni Loci. International Mathematics Research Notices, 2017(11), 3463–3509. https://doi.org/10.1093/imrn/rnw133[details]
2016
van der Geer, G. (2016). A Stratification on the Moduli of K3 Surfaces in Positive Characteristic. In W. Ballmann, C. Blohmann, G. Faltings, P. Teichner, & D. Zagier (Eds.), Arbeitstagung Bonn 2013: In Memory of Friedrich Hirzebruch (pp. 387-403). (Progress in Mathematics; Vol. 319). Cham: Birkhäuser. https://doi.org/10.1007/978-3-319-43648-7_14[details]
van der Geer, G., & Kouvidakis, A. (2016). Divisors on Hurwitz Spaces: An Appendix to 'The Cycle Classes of Divisorial Maroni Loci'. Moscow Mathematical Journal, 16(4), 767–774. [details]
Cléry, F., & van der Geer, G. (2015). Constructing vector-valued Siegel modular forms from scalar-valued Siegel modular forms. Pure and Applied Mathematics Quarterly, 11(1), 21-47. https://doi.org/10.4310/PAMQ.2015.v11.n1.a2[details]
Cléry, F., van der Geer, G., & Grushevsky, S. (2015). Siegel modular forms of genus 2 and level 2. International Journal of Mathematics, 26(05), [1550034]. https://doi.org/10.1142/S0129167X15500342[details]
Ekedahl, T., & van der Geer, G. (2015). Cycle classes on the moduli of K3 surfaces in positive characteristic. Selecta Mathematica-New Series, 21(1), 245-291. https://doi.org/10.1007/s00029-014-0156-8[details]
Bergström, J., Faber, C., & van der Geer, G. (2014). Siegel modular forms of degree three and the cohomology of local systems. Selecta Mathematica-New Series, 20(1), 83-124. https://doi.org/10.1007/s00029-013-0118-6[details]
van der Geer, G. (2013). The cohomology of the moduli space of Abelian varieties. In G. Farkas, & I. Morrison (Eds.), The handbook of moduli. - Volume 1 (pp. 415-458). (Advanced Lectures in Mathematics; No. 24). Somerville, Mass.: International Press. [details]
van der Geer, G., & Katsura, T. (2013). Relations between some invariants of algebraic varieties in positive characteristic. Rendiconti del Circolo Matematico di Palermo, 62(1), 111-125. https://doi.org/10.1007/s12215-013-0112-z[details]
2012
Kouvidakis, A., & van der Geer, G. (2012). The class of a Hurwitz divisor on the moduli of curves of even genus. Asian Journal of Mathematics, 16(4), 787-806. https://doi.org/10.4310/AJM.2012.v16.n4.a9[details]
van der Geer, G., & Kouvidakis, A. (2012). Rational correspondences between moduli spaces of curves defined by Hurwitz spaces. Journal of Pure and Applied Algebra, 216(4), 876-893. https://doi.org/10.1016/j.jpaa.2011.10.017[details]
2011
van der Geer, G. (2011). Rank one Eisenstein cohomology of local systems on the moduli space of abelian varieties. Science China mathematics, 54(8), 1621-1634. https://doi.org/10.1007/s11425-010-4159-4[details]
van der Geer, G., & Kouvidakis, A. (2011). The Hodge bundle on Hurwitz spaces. Pure and Applied Mathematics Quarterly, 7 (2011)(4), 1297-1307. [details]
2010
van der Geer, G. B. M., & Kouvidakis, A. (2010). A note on Fano surfaces of nodal cubic threefolds. Advanced Studies in Pure Mathematics, 58, 27-45. [details]
van der Geer, G., & Kouvidakis, A. (2010). The rank-one limit of the Fourier-Mukai transform. Documenta Mathematica, 15, 747-763. [details]
Ekedahl, T., & van der Geer, G. (2009). Cycle classes of the E-O stratification on the moduli of abelian varieties. In Y. Tschinkel, & Y. Zarhin (Eds.), Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. - Vo. 1 (pp. 567-636). (Progress in mathematics; No. 269). Boston: Birkhäuser. https://doi.org/10.1007/978-0-8176-4745-2_13[details]
van der Geer, G. (2009). Hunting for curves with many points. In Y. M. Chee, C. Li, S. Ling, H. Wang, & C. Xing (Eds.), Coding and Cryptology: Second International Workshop, IWCC 2009, Zhangjiajie, China, June 1-5, 2009 : proceedings (pp. 82-96). (Lecture Notes in Computer Science; Vol. 5557). Springer. https://doi.org/10.1007/978-3-642-01877-0_9[details]
van der Geer, G. (2009). The limit of the Fourier-Mukai transform. Oberwolfach Reports, 44, 17-19. [details]
2008
Bergström, J., & van der Geer, G. (2008). The Euler characteristic of local systems on the moduli of curves and abelian varieties of genus three. Journal of Topology, 1(3), 651-662. https://doi.org/10.1112/jtopol/jtn015[details]
Bergström, J., Faber, C., & van der Geer, G. (2008). Siegel modular forms of genus 2 and level 2: Cohomological computations and conjectures. International Mathematics Research Notices, 2008, rnn100. https://doi.org/10.1093/imrn/rnn100[details]
Edixhoven, B., van der Geer, G., & Moonen, B. (2008). Modular forms. In B. Edixhoven, G. van der Geer, & B. Moonen (Eds.), Modular forms on Schiermonnikoog (pp. 1-12). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511543371.002[details]
van der Geer, G. (2008). Siegel modular forms and their applications. In J. H. Bruinier, G. van der Geer, G. Harder, & D. Zagier (Eds.), The 1-2-3 of modular forms: Lectures at a summer school in Nordfjordeid, Norway (pp. 181-246). (Universitext). Springer. https://doi.org/10.1007/978-3-540-74119-0_3[details]
Ciliberto, C., & van der Geer, G. (2014). Corrigendum To: "Andreotti-Mayer Loci and the Schottky Problem", cf. Documenta Math. 13 (2008) 398--440. Documenta Mathematica, 19, 993-1001. [details]
Faber, C., van der Geer, G., & Looijenga, E. (2010). Classification of algebraic varieties. (EMS series of congress reports). Zürich: European Mathematical Society. https://doi.org/10.4171/007[details]
2008
Edixhoven, B., van der Geer, G., & Moonen, B. (2008). Modular forms on Schiermonnikoog. Cambridge, UK: Cambridge University Press. [details]
Duminil-Copin , H. (editor), Kappeler, T. (editor), Seidel , P. (editor) & van der Geer, G. (editor) (2012-2021). Monographs in Mathematics (Journal). http://www.ems-ph.org/qsearch.php?series=emm
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteer alle cookies’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Lees ook het UvA Privacy statement.