Suk, J., de Haan, P., Lippe, P., Brune, C., & Wolterink, J. M. (2024). Mesh neural networks for SE(3)-equivariant hemodynamics estimation on the artery wall. Computers in Biology and Medicine, 173, Article 108328. https://doi.org/10.1016/j.compbiomed.2024.108328[details]
Brehmer, J., Cohen, T., De Haan, P., & Lippe, P. (2023). Weakly supervised causal representation learning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), 36th Conference on Neural Information Processing Systems (NeurIPS 2022): New Orleans, Louisiana, USA, 28 November-9 December 2022 (Vol. 50, pp. 38319-38331). (Advances in Neural Information Processing Systems; Vol. 35). Neural Information Processing Systems Foundation. https://doi.org/10.48550/arXiv.2203.16437[details]
Gerdes, M., de Haan, P., Rainone, C., Bondesan, R., & Cheng, M. C. N. (2023). Learning lattice quantum field theories with equivariant continuous flows. SciPost Physics, 15(6), Article 238. https://doi.org/10.21468/SciPostPhys.15.6.238[details]
Gerdes, M., de Haan, P., Rainone, C., Bondesan, R. & Cheng, M. C. N. (18-1-2023). Data: Learning Lattice Quantum Field Theories with Equivariant Continuous Flows. Zenodo. https://doi.org/10.5281/zenodo.7547918
2022
Suk, J., de Haan, P., Lippe, P., Brune, C., & Wolterink, J. M. (2022). Mesh Convolutional Neural Networks for Wall Shear Stress Estimation in 3D Artery Models. In E. Puyol Antón, M. Pop, C. Martín-Isla, M. Sermesant, A. Suinesiaputra, O. Camara, K. Lekadir, & A. Young (Eds.), Statistical Atlases and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-Center Right Ventricular Segmentation in Cardiac MRI Challenge: 12th International Workshop, STACOM 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021 : revised selected papers (pp. 93-102). (Lecture Notes in Computer Science; Vol. 13131). Springer. https://doi.org/10.1007/978-3-030-93722-5_11[details]
2021
De Haan, P., Cohen, T. S., & Welling, M. (2021). Natural Graph Networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 5, pp. 3636-3646). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/2517756c5a9be6ac007fe9bb7fb92611-Abstract.html[details]
de Haan, P., Jayaraman, D., & Levine, S. (2020). Causal Confusion in Imitation Learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), 32nd Conference on Neural Information Processing Systems (NeurIPS 2019): Vancouver, Canada, 8-14 December 2019 (Vol. 15, pp. 11666-11677). (Advances in Neural Information Processing Systems; Vol. 32). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2019/hash/947018640bf36a2bb609d3557a285329-Abstract.html[details]
Falorsi, L., de Haan, P., Davidson, T. R., & Forré, P. (2019). Reparameterizing Distributions on Lie Groups. Proceedings of Machine Learning Research, 89, 3244-3253. https://arxiv.org/abs/1903.02958[details]
Falorsi, L., de Haan, P., Davidson, T. R., De Cao, N., Weiler, M., Forré, P., & Cohen, T. S. (2018). Explorations in Homeomorphic Variational Auto-Encoding. Paper presented at ICML18 Workshop on Theoretical Foundations and Applications of Deep Generative Models, Stockholm, Sweden. https://arxiv.org/abs/1807.04689[details]
Gerdes, M., de Haan, P., Rainone, C., Bondesan, R. & Cheng, M. C. N. (18-1-2023). Data: Learning Lattice Quantum Field Theories with Equivariant Continuous Flows. Zenodo. https://doi.org/10.5281/zenodo.7547918
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.