Juodis, A., & Reese, S. (2026). Five lessons for applied researchers from twenty years of common correlated effects estimation. Journal of Econometrics, 253, Article 106120. Advance online publication. https://doi.org/10.1016/j.jeconom.2025.106120
2025
Boot, T., & Juodis, A. (2025). Uniform inference in linear error-in-variables models: Divide-and-conquer. Econometric Reviews, 44(3), 335-355. https://doi.org/10.1080/07474938.2024.2417166
Juodis, A. (2025). This shock is different: Estimation and inference in misspecified two-way fixed effects panel regressions. Econometric Theory. Advance online publication. https://doi.org/10.1017/S026646662510008X
de Brabander, E., Juodis, A., & Miyazato Szini, G. (2025). On the use of synthetic difference-in-differences approach with (-out) covariates: The case study of Brexit referendum. Econometric Reviews, 44(10), 1617-1646. https://doi.org/10.1080/07474938.2025.2530649
2023
Juodis, A., & Kučinskas, S. (2023). Quantifying noise in survey expectations. Quantitative Economics, 14(2), 609-650. https://doi.org/10.3982/QE1633[details]
Juodis, A., & Sarafidis, V. (2023). New results on asymptotic properties of likelihood estimators with persistent data for small and large T. SERIEs, 14(3-4), 435-461. https://doi.org/10.1007/s13209-023-00286-y[details]
Xiao, J., Karavias, Y., Juodis, A., Sarafidis, V., & Ditzen, J. (2023). Improved tests for Granger noncausality in panel data. Stata Journal, 23(1), 230-242. https://doi.org/10.1177/1536867X231162034[details]
Juodis, A. (2022). A regularization approach to common correlated effects estimation. Journal of Applied Econometrics, 37(4), 788-810. https://doi.org/10.1002/jae.2899[details]
Juodis, A., & Reese, S. (2022). The Incidental Parameters Problem in Testing for Remaining Cross-Section Correlation. Journal of Business and Economic Statistics, 40(3), 1191-1203. https://doi.org/10.1080/07350015.2021.1906687[details]
Juodis, A., & Sarafidis, V. (2022). A Linear Estimator for Factor-Augmented Fixed-T Panels With Endogenous Regressors. Journal of Business and Economic Statistics, 22(1), 1-15. https://doi.org/10.1080/07350015.2020.1766469
Juodis, A., Karavias, Y., & Sarafidis, V. (2021). A homogeneous approach to testing for Granger non-causality in heterogeneous panels. Empirical Economics, 60(1), 93–112. https://doi.org/10.1007/s00181-020-01970-9[details]
Juodis, A., & Westerlund, J. (2019). Optimal panel unit root testing with covariates. Econometrics Journal, 22(1), 57-72. https://doi.org/10.1111/ectj.12118
Bun, M. J. G., Carree, M. A., & Juodis, A. (2017). On Maximum Likelihood Estimation of Dynamic Panel Data Models. Oxford Bulletin of Economics and Statistics, 79(4), 463-494. https://doi.org/10.1111/obes.12156[details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.