Mooij, J. M., & Claassen, T. (2020). Constraint-Based Causal Discovery with Partial Ancestral Graphs in the presence of Cycles. Proceedings of Machine Learning Research, 124, 1159-1168. http://proceedings.mlr.press/v124/m-mooij20a.html[details]
Mooij, J. M., Magliacane, S., & Claassen, T. (2020). Joint Causal Inference from Multiple Contexts. Journal of Machine Learning Research, 21(99), 1-108. https://www.jmlr.org/papers/v21/[details]
Blom, T., Bongers, S., & Mooij, J. M. (2019). Beyond Structural Causal Models: Causal Constraints Models. In A. Globerson, & R. Silva (Eds.), Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence: UAI 2019, Tel Aviv, Israel, July 22-25, 2019 [205] AUAI Press. http://auai.org/uai2019/proceedings/papers/205.pdf[details]
Forré, P., & Mooij, J. M. (2019). Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias. In A. Globerson, & R. Silva (Eds.), Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence: UAI 2019, Tel Aviv, Israel, July 22-25, 2019 [15] Corvallis, OR: AUAI Press. [details]
Magliacane, S., van Ommen, T., Claassen, T., Bongers, S., Versteeg, P., & Mooij, J. M. (2019). Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), 32nd Conference on Neural Information Processing Systems 2018: Montreal, Canada, 3-8 December 2018 (Vol. 15, pp. 10846-10856). (Advances in Neural Information Processing Systems; Vol. 31). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/8282-domain-adaptation-by-using-causal-inference-to-predict-invariant-conditional-distributions[details]
Blom, T., Klimovskaia, A., Magliacane, S., & Mooij, J. M. (2018). An Upper Bound for Random Measurement Error in Causal Discovery. In A. Globerson, & R. Silva (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Thirty-Fourth Concerence (2018) : August 6-10, 2018, Monterey, California, USA (pp. 570-579). Corvallis, Oregon: AUAI Press. [details]
Forré, P., & Mooij, J. M. (2018). Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders. In A. Globerson, & R. Silva (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Thirty-Fourth Concerence (2018) : August 6-10, 2018, Monterey, California, USA (pp. 269-278). Corvallis, Oregon: AUAI Press. [details]
Louizos, C., Shalit, U., Mooij, J., Sontag, D., Zemel, R., & Welling, M. (2018). Causal Effect Inference with Deep Latent-Variable Models. In U. von Luxburg, I. Guyon, S. Bengio, H. Wallach, R. Fergus, S. V. N. Vishwanathan, & R. Garnett (Eds.), 31st Conference on Advances in Neural Information Processing Systems (NIPS 2017): Long Beach, California, USA, 4-9 December 2017 (Vol. 10, pp. 6447-6457). (Advances in Neural Information Processing Systems; Vol. 30). Neural Information Processing Systems. https://papers.nips.cc/paper/2017/file/94b5bde6de888ddf9cde6748ad2523d1-Paper.pdf[details]
Rubenstein, P. K., Bongers, S., Schölkopf, B., & Mooij, J. M. (2018). From Deterministic ODEs to Dynamic Structural Causal Models. In A. Globerson, & R. Silva (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Thirty-Fourth Concerence (2018) : August 6-10, 2018, Monterey, California, USA (pp. 114-123). [43] Corvallis, Oregon: AUAI Press. [details]
Magliacane, S., Claassen, T., & Mooij, J. (2017). Ancestral Causal Inference. In D. D. Lee, U. von Luxburg, R. Garnett, M. Sugiyama, & I. Guyon (Eds.), 30th Annual Conference on Neural Information Processing Systems 2016: Barcelona, Spain, 5-10 December 2016 (Vol. 7, pp. 4473-4481). (Advances in Neural Information Processing Systems; Vol. 29). Red Hook, NY: Curran Associates. [details]
Rubenstein, P. K., Weichwald, S., Bongers, S., Mooij, J. M., Janzing, D., Grosse-Wentrup, M., & Schölkopf, B. (2017). Causal Consistency of Structural Equation Models. In G. Elidan, & K. Kersting (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Thirty-Third Conference (2017) : 11-15 August 2017, Sydney, Australia [11] Corvallis, OR: AUAI Press. [details]
van Ommen, T., & Mooij, J. M. (2017). Algebraic Equivalence of Linear Structural Equation Models. In G. Elidan, & K. Kersting (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Thirty-Third Conference (2017) : 11-15 August 2017, Sydney, Australia [277] Corvallis, OR: AUAI Press. [details]
Meinshausen, N., Hauser, A., Mooij, J. M., Peters, J., Versteeg, P., & Bühlmann, P. (2016). Methods for causal inference from gene perturbation experiments and validation. Proceedings of the National Academy of Sciences of the United States of America, 113(27), 7361-7368. https://doi.org/10.1073/pnas.1510493113[details]
Mooij, J. M., Peters, J., Janzing, D., Zscheischler, J., & Schölkopf, B. (2016). Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks. Journal of Machine Learning Research, 17, [32]. [details]
Mooij, J. M., & Cremers, J. (2015). An Empirical Study of one of the Simplest Causal Prediction Algorithms. In R. Silva, I. Shpitser, R. Evans, J. Peters, & T. Claassen (Eds.), UAI2015-ACI : UAI 2015 Workshop on Advances in Causal Inference: Proceedings of the UAI 2015 Workshop on Advances in Causal Inference, co-located with the 31st Conference on Uncertainty in Artificial Intelligence (UAI 2015) : Amsterdam, The Netherlands, July 16, 2015 (pp. 30-39). [2] (CEUR Workshop Proceedings; Vol. 1504). CEUR-WS. http://ceur-ws.org/Vol-1504/uai2015aci_paper2.pdf[details]
de Leeuw, C. A., Mooij, J. M., Heskes, T., & Posthuma, D. (2015). MAGMA: Generalized Gene-Set Analysis of GWAS Data. PLoS Computational Biology, 11(4), [e004219]. https://doi.org/10.1371/journal.pcbi.1004219[details]
Cornia, N., & Mooij, J. M. (2014). Type-II Errors of Independence Tests Can Lead to Arbitrarily Large Errors in Estimated Causal Effects: An Illustrative Example. In J. M. Mooij, D. Janzing, J. Peters, T. Claassen, & A. Hyttinen (Eds.), UAI2014CI : UAI 2014 Workshop on Causal Inference: Learning and Prediction: Proceedings of the UAI 2014 Workshop Causal Inference: Learning and Prediction, co-located with 30th Conference on Uncertainty in Artificial Intelligence (UAI 2014) : Quebec City, Canada, July 27, 2014 (pp. 35-42). (CEUR Workshop Proceedings; Vol. 1274). CEUR-WS. http://ceur-ws.org/Vol-1274/uai2014ci_paper7.pdf[details]
Peters, J., Mooij, J. M., Janzing, D., & Schölkopf, B. (2014). Causal Discovery with Continuous Additive Noise Models. Journal of Machine Learning Research, 15, 2009-2053. [details]
Claassen, T., Mooij, J. M., & Heskes, T. (2013). Learning sparse causal models is not NP-hard. In A. Nicholson, & P. Smyth (Eds.), Uncertainty in artificial intelligence: proceedings of the twenty-ninth conference (2013): July 12-14, 2013, Bellevue, Washington, United States (pp. 172-181). Corvallis, Oregon: AUAI Press. [details]
Mooij, J. M., & Heskes, T. (2013). Cyclic causal discovery from continuous equilibrium data. In A. Nicholson, & P. Smyth (Eds.), Uncertainty in artificial intelligence: proceedings of the twenty-ninth conference (2013): July 12-14, 2013, Bellevue, Washington, United States (pp. 431-439). Corvallis, Oregon: AUAI Press. [details]
Mooij, J. M., Janzing, D., & Schölkopf, B. (2013). From Ordinary Differential Equations to Structural Causal Models: the deterministic case. In A. Nicholson, & P. Smyth (Eds.), Uncertainty in artificial intelligence: proceedings of the twenty-ninth conference (2013): July 12-14, 2013, Bellevue, Washington, United States (pp. 440-448). Corvallis, Oregon: AUAI Press. [details]
Mooij, J. M., Janzing, D., Peters, J., Claassen, T., & Hyttinen, A. (Eds.) (2014). UAI2014CI : UAI 2014 Workshop on Causal Inference: Learning and Prediction: Proceedings of the UAI 2014 Workshop Causal Inference: Learning and Prediction, co-located with 30th Conference on Uncertainty in Artificial Intelligence (UAI 2014) : Quebec City, Canada, July 27, 2014. (CEUR Workshop Proceedings; Vol. 1274). CEUR-WS. http://ceur-ws.org/Vol-1274[details]
2017
Kingma, D. P. (2017). Variational inference & deep learning: A new synthesis. [details]
Forré, P., & Mooij, J. M. (2017). Markov Properties for Graphical Models with Cycles and Latent Variables. Amsterdam: Informatics Institute, University of Amsterdam. [details]
De UvA maakt gebruik van cookies en daarmee vergelijkbare technieken voor het functioneren, meten en optimaliseren van de website. Ook worden er cookies geplaatst om bijv. YouTube filmpjes te kunnen tonen en voor marketingdoeleinden. Deze laatste categorie betreffen de tracking cookies. Uw internetgedrag kan worden gevolgd door middel van deze tracking cookies. Door op “Accepteer alle cookies” te klikken gaat u hiermee akkoord. Lees ook het UvA Privacy statement
Noodzakelijk
Cookies noodzakelijk voor het basisfunctioneren van de website. Deze cookies worden bijvoorbeeld ingezet om het inloggen voor studenten en medewerkers mogelijk te maken.
Noodzakelijk & Optimalisatie
Cookies die worden geplaatst om anoniem gegevens te verzamelen over het gebruik van de website om deze te verbeteren.
Noodzakelijk & Optimalisatie & Marketing
Cookies die in staat stellen bezoekers te volgen en van gepersonaliseerde advertenties te voorzien. Externe advertentienetwerken verzamelen individuele gegevens over internetgedrag. Selecteer deze categorie om YouTube video's te kunnen kijken.