Bakker, S., Ma, Y., & Mohammadi Ziabari, S. S. (2026). Addressing Label Scarcity: Hybrid Anomaly Detection in Mental Healthcare Billing. In Information Integration and Web Intelligence: 27th International Conference, iiWAS 2025, Matsue, Japan, December 8–10, 2025 : proceedings (pp. 112–126). (Lecture Notes in Computer Science; Vol. 16330). Springer. Advance online publication. https://doi.org/10.1007/978-3-032-11976-6_8
2025
Ashtar, D., Mohammadi Ziabari, S., & Alsahag, A. M. M. (2025). Hybrid Forecasting for Sustainable Electricity Demand in The Netherlands Using SARIMAX, SARIMAX-LSTM, and Sequence-to-Sequence Deep Learning Models. Sustainability, 17(16), Article 7192. https://doi.org/10.3390/su17167192
Braakman, J., Mohammadi Ziabari, S. S., & Korver, A. (2025). Enhancing Soil Pollution Prediction Through Expert-Defined Risk Zones and Machine Learning: A Case Study in the Netherlands. In P. Delir Haghighi, M. Greguš, G. Kotsis, & I. Khalil (Eds.), Information Integration and Web Intelligence: 26th International Conference, iiWAS 2024, Bratislava, Slovak Republic, December 2–4, 2024 : proceedings (Vol. II, pp. 219-225). (Lecture Notes in Computer Science; Vol. 15343). Springer. https://doi.org/10.1007/978-3-031-78093-6_19
Chen, J., Alsahag, A. M. M., & Mohammadi Ziabari, S. S. (2025). An analytics framework for interpretable subseasonal forecasting under decadal climate variability. Decision Analytics Journal, 17, Article 100660. https://doi.org/10.1016/j.dajour.2025.100660
Coolwijk, S., Mohammadi Ziabari, S. S., & Angileri , F. (2025). Vision Transformer Approach to Customer Churn Prediction Radar Chart Image Classification for Non-subscription Based E-commerce. In P. Delir Haghighi, M. Greguš, G. Kotsis, & I. Khalil (Eds.), Information Integration and Web Intelligence: 26th International Conference, iiWAS 2024, Bratislava, Slovak Republic, December 2–4, 2024 : proceedings (Vol. II, pp. 75–80). (Lecture Notes in Computer Science; Vol. 15343). Springer. https://doi.org/10.1007/978-3-031-78093-6_6
Curiël, R., Alsahag, A. M. M., & Mohammadi Ziabari, S. S. (2025). Integrating Climate and Economic Predictors in Hybrid Prophet–(Q)LSTM Models for Sustainable National Energy Demand Forecasting: Evidence from The Netherlands. Sustainability, 17(19), Article 8687. https://doi.org/10.3390/su17198687
Katona, Z., Mohammadi Ziabari, S. S., & Karimi Nejadasl, F. (2025). MARINE: A Computer Vision Model for Detecting Rare Predator-Prey Interactions in Animal Videos. In A. Dasgupta, R. U. Kiran, R. El Shawi, S. Srirama, & M. Adhikari (Eds.), Big Data and Artificial Intelligence: 12th International Conference, BDA 2024, Hyderabad, India, December 17–20, 2024, Proceedings (pp. 183–199). (Lecture Notes in Computer Science; Vol. 15526). Springer. https://doi.org/10.1007/978-3-031-81821-9_11
Mohammadi Ziabari, S. S. (2025). Explainable feature selection combining particle swarm optimisation with adaptive LASSO for MRI radiogenomics: Predicting HPV status in oropharyngeal cancer. Computer Methods and Programs in Biomedicine. https://doi.org/10.1016/j.cmpb.2025.109204
Mohammadi Ziabari, S. S., & Anwar, K. (2025). Attention to the Branches: A Comparative Analysis of FairMOT with Transformers on Fish Dataset. In Multi-disciplinary Trends in Artificial Intelligence: 17th International Conference, MIWAI 2024, Pattaya, Thailand, November 11–15, 2024 : proceedings (Vol. I, pp. 64–76). (Lecture Notes in Computer Science; Vol. 15431), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-981-96-0692-4_6
Tigchelaar, K., Mohammadi Ziabari, S. S., & Mulder, J. (2025). The Integration of Federated Learning Techniques in Predictive Aircraft Maintenance Using Cloud Services. In S. Wu, X. Su, X. Xu, & B. H. Kang (Eds.), Knowledge Management and Acquisition for Intelligent Systems: 20th Principle and Practice of Data and Knowledge Acquisition Workshop, PKAW 2024, Kyoto, Japan, November 18–19, 2024 : proceedings (pp. 203-213). (Lecture Notes in Computer Science; Vol. 15372), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-981-96-0026-7_16
Van de Sype, L., Vert, M., Sharpanskykh, A., & Mohammadi Ziabari, S. S. (2025). Effects of Unplanned Incoming Flights on Airport Relief Processes After a Major Natural Disaster. Aerospace, 12(10), Article 857. https://doi.org/10.3390/aerospace12100857
Zhu, C., Mohammadi Ziabari, S. S., & Alsahag, A. M. M. (2025). Task-Adaptive Debiasing with SCM for Sentiment Analysis. Machine Learning for Computational Science and Engineering, 1, Article 41. https://doi.org/10.1007/s44379-025-00043-x
2024
de Bosscher, B. C. D., Mohammadi Ziabari, S. S., & Sharpanskykh, A. (2024). Towards a Better Understanding of Agent-Based Airport Terminal Operations Using Surrogate Modeling. In L. G. Nardin, S. Mehryar, & S. Mehryar (Eds.), Multi-Agent-Based Simulation XXIV: 24th International Workshop, MABS 2023, London, UK, May 29–June 2, 2023 : revised selected papers (pp. 16-29). (Lecture Notes in Computer Science; Vol. 14558), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-031-61034-9_2
van Beveren, I., Sergidou, E., & Mohammadi Ziabari, S. S. (2024). Evaluating Deep Learning-Based Speaker Verification Systems: A Comparative Study Across Open-Source and Forensic Datasets. In Evaluating Deep Learning-Based Speaker Verification Systems: A Comparative Study Across Open-Source and Forensic Datasets
van de Sande, S. N. P., Alsahag, A. M. M., & Mohammadi Ziabari, S. S. (2024). Enhancing the Predictability of Wintertime Energy Demand in The Netherlands Using Ensemble Model Prophet-LSTM. Processes, 12(11), Article 2519. https://doi.org/10.3390/pr12112519
2023
Chikhi, A., Mohammadi Ziabari, S. S., & van Essen, J. W. (2023). A Comparative Study of Traditional, Ensemble and Neural Network-Based Natural Language Processing Algorithms. Journal of Risk and Financial Management, 16(7), Article 327. https://doi.org/10.3390/jrfm16070327
De Bosscher, B. C. D., Mohammadi Ziabari, S. S., & Sharpanskykh, A. (2023). A comprehensive study of agent-based airport terminal operations using surrogate modeling and simulation. Simulation Modelling Practice and Theory, 128, Article 102811. https://doi.org/10.1016/j.simpat.2023.102811
De Leeuw, B., Mohammadi Ziabari, S. S., & Sharpanskykh, A. (2023). Surrogate Modeling of Agent-Based Airport Terminal Operations. In F. Lorig, & E. Norling (Eds.), Multi-Agent-Based Simulation XXIII - 23rd International Workshop, MABS 2022, Revised Selected Papers (pp. 82-94). (Lecture Notes in Computer Science; Vol. 13743), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-031-22947-3_7
Deshamudre, R., Mohammadi Ziabari, S. S., & van Houten, M. (2023). Enhancing AI Adoption in Healthcare: A Data Strategy for Improved Heart Disease Prediction Accuracy Through Deep Learning Techniques. In P. Delir Haghighi, E. Pardede, G. Dobbie, V. Yogarajan, N. A. S. ER, G. Kotsis, & I. Khalil (Eds.), Information Integration and Web Intelligence: 25th International Conference, iiWAS 2023, Denpasar, Bali, Indonesia, December 4–6, 2023 : proceedings (pp. 13-19). (Lecture Notes in Computer Science; Vol. 14416). Springer. https://doi.org/10.1007/978-3-031-48316-5_2
Hooftman, D., Mohammadi Ziabari, S. S., & Snijder, J. (2023). Exploring CycleGAN for Bias Reduction in Gender Classification: Generative Modelling for Diversifying Data Augmentation. In H. Lu, M. Blumenstein, S.-B. Cho, C.-L. Liu, Y. Yagi, & T. Kamiya (Eds.), Pattern Recognition: 7th Asian Conference, ACPR 2023, Kitakyushu, Japan, November 5–8, 2023 : proceedings (pp. 26-40). (Lecture Notes in Computer Science; Vol. 14408). Springer. https://doi.org/10.1007/978-3-031-47665-5_3
2022
Janssen, S., Sharpanskykh, A., & Mohammadi Ziabari, S. S. (2022). Using Causal Discovery to Design Agent-Based Models. In K. H. Van Dam, & N. Verstaevel (Eds.), Multi-Agent-Based Simulation XXII - 22nd International Workshop, MABS 2021, Revised Selected Papers (pp. 15-28). (Lecture Notes in Computer Science; Vol. 13128), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-030-94548-0_2
2021
Andrianov, A., Ziabari, S. S. M., & Gerritsen, C. (2021). A brain-inspired cognitive support model for stress reduction based on an adaptive network model. Cognitive Systems Research, 65, 151-166. https://doi.org/10.1016/j.cogsys.2020.10.010
Mekić, A., Mohammadi Ziabari, S. S., & Sharpanskykh, A. (2021). Systemic agent-based modeling and analysis of passenger discretionary activities in airport terminals. Aerospace, 8(6), Article 162. https://doi.org/10.3390/aerospace8060162
Mohammadi Ziabari, S. S., Sanders, G., Mekic, A., & Sharpanskykh, A. (2021). Demo Paper: A Tool for Analyzing COVID-19-Related Measurements Using Agent-Based Support Simulator for Airport Terminal Operations. In F. Dignum, J. M. Corchado, & F. De La Prieta (Eds.), Advances in Practical Applications of Agents, Multi-Agent Systems, and Social Good. The PAAMS Collection - 19th International Conference, PAAMS 2021, Proceedings (pp. 359-362). (Lecture Notes in Computer Science; Vol. 12946), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-030-85739-4_32
Sanders, G., Mohammadi Ziabari, S. S., Mekić, A., & Sharpanskykh, A. (2021). Agent-Based Modelling and Simulation of Airport Terminal Operations Under COVID-19-Related Restrictions. In F. Dignum, J. M. Corchado, & F. De La Prieta (Eds.), Advances in Practical Applications of Agents, Multi-Agent Systems, and Social Good. The PAAMS Collection - 19th International Conference, PAAMS 2021, Proceedings (pp. 214-228). (Lecture Notes in Computer Science; Vol. 12946), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-030-85739-4_18
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.