Nieuwenhuizen, T. M., Limousin, M., & Morandi, A. (2021). Accurate modeling of the strong and weak lensing profiles for the galaxy clusters Abell 1689 and 1835. European Physical Journal: Special Topics, 230(4), 1137-1148. https://doi.org/10.1140/epjs/s11734-021-00101-4[details]
Špička, V., Keefe, P. D., & Nieuwenhuizen, T. M. (2021). Non-equilibrium systems and foundations of quantum physics. European Physical Journal: Special Topics, 230(4), 729-731. https://doi.org/10.1140/epjs/s11734-021-00103-2[details]
2020
Nieuwenhuizen, T. M. (2020). Stochastic Electrodynamics: Renormalized Noise in the Hydrogen Ground-State Problem. Frontiers in Physics, 8, [335]. https://doi.org/10.3389/fphy.2020.00335[details]
van Heusden, E. F. G., & Nieuwenhuizen, T. M. (2019). Simultaneous measurement of non-commuting observables in entangled systems. European Physical Journal: Special Topics, 227(15-16), 2209-2219. https://doi.org/10.1140/epjst/e2019-800216-2[details]
Špička, V., Keefe, P. D., & Nieuwenhuizen, T. M. (2019). Non-equilibrium dynamics: quantum systems and foundations of quantum mechanics. European Physical Journal: Special Topics, 227(15-16), 1837-1848. https://doi.org/10.1140/epjst/e2019-900018-7[details]
2018
Nieuwenhuizen, T. M., Morandi, A., & Limousin, M. (2018). Modified Gravity and its test on galaxy clusters. Monthly Notices of the Royal Astronomical Society, 476(3), 3393-3398. https://doi.org/10.1093/mnras/sty380[details]
Allahverdyan, A. E., Balian, R., & Nieuwenhuizen, T. M. (2017). A sub-ensemble theory of ideal quantum measurement processes. Annals of Physics, 376, 324-352. https://doi.org/10.1016/j.aop.2016.11.001[details]
Nieuwenhuizen, T. M. (2017). A partially occulting MACHO-microlensing event in the Twin Quasar Q0957+561. Fortschritte der Physik, 65(6-8), [1600107]. https://doi.org/10.1002/prop.201600107[details]
Nieuwenhuizen, T. M. (2017). How Zwicky already ruled out modified gravity theories without dark matter. Fortschritte der Physik, 65(6-8), [1600050]. https://doi.org/10.1002/prop.201600050[details]
Perarnau-Llobet, M., & Nieuwenhuizen, T. M. (2017). Dynamics of quantum measurements employing two Curie-Weiss apparatuses. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375(2106), [20160386]. https://doi.org/10.1098/rsta.2016.0386[details]
Perarnau-Llobet, M., & Nieuwenhuizen, T. M. (2017). Simultaneous measurement of two noncommuting quantum variables: Solution of a dynamical model. Physical Review A, 95(5), [052129]. https://doi.org/10.1103/PhysRevA.95.052129[details]
Nieuwenhuizen, T. M. (2016). Dirac neutrino mass from a neutrino dark matter model for the galaxy cluster Abell 1689. Journal of Physics: Conference Series, 701, [012022]. https://doi.org/10.1088/1742-6596/701/1/012022[details]
Nieuwenhuizen, T. M. (2016). On the stability of classical orbits of the hydrogen ground state in Stochastic Electrodynamics. Entropy, 18(4), [135]. https://doi.org/10.3390/e18040135[details]
Nieuwenhuizen, T. M., & Liska, M. T. P. (2015). Simulation of the Hydrogen Ground State in Stochastic Electrodynamics-2: Inclusion of Relativistic Corrections. Foundations of Physics, 45(10), 1190-1202. https://doi.org/10.1007/s10701-015-9919-0[details]
Nieuwenhuizen, T. M., Keefe, P. D., & Špička, V. (2015). FQMT'13: Frontiers of Quantum and Mesoscopic Thermodynamics (Prague, Czech Republic, 29 July-3 August 2013). Physica Scripta, 2015(T165), [010302]. https://doi.org/10.1088/0031-8949/2015/T165/010302[details]
Nieuwenhuizen, T. M., Perarnau-llobet, M., & Balian, R. (2014). Lectures on dynamical models for quantum measurements. International Journal of Modern Physics B, 28(21), 1430014. https://doi.org/10.1142/S021797921430014X[details]
2013
Allaverdyan, A. E., Balian, R., & Nieuwenhuizen, T. M. (2013). Understanding quantum measurement from the solution of dynamical models. Physics Reports - Review Section of Physics Letters, 525, 1-166. https://doi.org/10.1016/j.physrep.2012.11.001[details]
Nieuwenhuizen, T. M., & Morandi, A. (2013). Are observations of the galaxy cluster A1689 consistent with a neutrino dark matter scenario? Monthly Notices of the Royal Astronomical Society, 434(3), 2679-2683. https://doi.org/10.1093/mnras/stt1216[details]
2012
Nieuwenhuizen, T. M. (2012). Model for common growth of supermassive black holes, bulges and globular star clusters: Ripping off Jeans clusters. Europhysics Letters, 97(3), 39001. https://doi.org/10.1209/0295-5075/97/39001[details]
Nieuwenhuizen, T. M., Keefe, P. D., & Špička, V. (2012). FQMT'11: Frontiers of Quantum and Mesoscopic Thermodynamics (Prague, Czech Republic, 25-30 July 2011). Physica Scripta, T151, 010301. https://doi.org/10.1088/1402-4896/2012/T151/010301[details]
Nieuwenhuizen, T. M., van Heusden, E. F. G., & Liska, M. T. P. (2012). Do the Herschel cold clouds in the Galactic halo embody its dark matter? Physica Scripta, 2012(T151), 014085. https://doi.org/10.1088/0031-8949/2012/T151/014085[details]
Schild, R. E., Gibson, C. H., Nieuwenhuizen, T. M., & Wickramasinghe, N. C. (2012). Why don't clumps of cirrus dust gravitationally collapse? Physica Scripta, 2012(T151), 014084. https://doi.org/10.1088/0031-8949/2012/T151/014084[details]
Mehmani, B., & Nieuwenhuizen, T. M. (2011). An overview on single apparatus quantum measurements. Journal of Computational and Theoretical Nanoscience, 8(6), 937-948. https://doi.org/10.1166/jctn.2011.1773[details]
Nieuwenhuizen, T. M. (2011). Exact Schwarzschild-de Sitter black holes in a family of massive gravity models. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 84. https://doi.org/10.1103/PhysRevD.84.024038[details]
Nieuwenhuizen, T. M. (2011). Explanation of the Helium-3 problem. Journal of Cosmology, 15, 6200-6203. [details]
Nieuwenhuizen, T. M., & Morandi, A. (2011). Prediction for the neutrino mass in the KATRIN experiment from lensing by the galaxy cluster A1689. Journal of Cosmology, 15, 6004-6016. [details]
Nieuwenhuizen, T. M., & Pombo, C. (2011). Note on the chemical potential of decoupled matter in the Universe. Journal of Cosmology, 15, 6340-6344. [details]
Nieuwenhuizen, T. M., Keefe, P. D., & Spicka, V. (2011). Round table discussion at the workshop "New directions in modern cosmology". Journal of Cosmology, 15, 6326-6339. [details]
Nieuwenhuizen, T. M., Schild, R. E., & Gibson, C. H. (2011). Do micro brown dwarf detections explain the galactic dark matter? Journal of Cosmology, 15, 6017-6029. [details]
2010
Allahverdyan, A. E., Balian, R., & Nieuwenhuizen, T. M. (2010). Simultaneous measurement of non-commuting observables. Physica E : Low-dimensial Systems & Nanostructures, 42, 339-342. https://doi.org/10.1016/j.physe.2009.08.007[details]
Nieuwenhuizen, T. M., & Špička, V. (2010). Bose-Einstein condensed supermassive black holes: A case of renormalized quantum field theory in curved space-time. Physica E : Low-dimensial Systems & Nanostructures, 42, 256-268. https://doi.org/10.1016/j.physe.2009.10.040[details]
Špička, V., Nieuwenhuizen, T. M., & Keefe, P. D. (2010). Physics at the FMQT’08 conference. Physica E : Low-dimensial Systems & Nanostructures, 42, 207-227. https://doi.org/10.1016/j.physe.2009.11.064[details]
2009
Allahverdyan, A. E., Gevorkian, Z. S., Hu, C-K., & Nieuwenhuizen, T. M. (2009). How adsorption influences DNA denaturation. Physical Review E, 79(3), 031903. https://doi.org/10.1103/PhysRevE.79.031903[details]
Nieuwenhuizen, T. M., Gibson, C. H., & Schild, R. E. (2009). Gravitational hydrodynamics of large-scale structure formation. Europhysics Letters, 88(4), 49001. https://doi.org/10.1209/0295-5075/88/49001[details]
Nieuwenhuizen, T. M. (2001). Formulation of thermodynamics for the glassy state: Configurational energy as a modest source of energy. Journal of Chemical Physics, 115(17), 8083-8088. https://doi.org/10.1063/1.1399036[details]
Nieuwenhuizen, T. M., Pombo, C., Furtado, C., Khrennikov, A. Y., Pedrosa, I. A., & Špička, V. (2015). Quantum Foundations and Open Quantum Systems: lecture notes of the Advanced School. Singapore: World Scientific. https://doi.org/10.1142/9789814616737_fmatter[details]
2008
Nieuwenhuizen, T. M. (2008). On the field theoretic description of gravitation. In H. Kleinert, R. T. Jantzen, & R. Ruffini (Eds.), The eleventh Marcel Grossmann Meeting: on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories: proceedings of the MG11 Meeting on General Relativity, Berlin, Germany 23-29 July 2006. - Part B (pp. 1260-1262). Singapore: World Scientific. https://doi.org/10.1142/9789812834300_0124[details]
De UvA maakt gebruik van cookies en daarmee vergelijkbare technieken voor het functioneren, meten en optimaliseren van de website. Ook worden er cookies geplaatst om bijv. YouTube filmpjes te kunnen tonen en voor marketingdoeleinden. Deze laatste categorie betreffen de tracking cookies. Uw internetgedrag kan worden gevolgd door middel van deze tracking cookies. Door op “Accepteer alle cookies” te klikken gaat u hiermee akkoord. Lees ook het UvA Privacy statement
Noodzakelijk
Cookies noodzakelijk voor het basisfunctioneren van de website. Deze cookies worden bijvoorbeeld ingezet om het inloggen voor studenten en medewerkers mogelijk te maken.
Noodzakelijk & Optimalisatie
Cookies die worden geplaatst om anoniem gegevens te verzamelen over het gebruik van de website om deze te verbeteren.
Noodzakelijk & Optimalisatie & Marketing
Cookies die in staat stellen bezoekers te volgen en van gepersonaliseerde advertenties te voorzien. Externe advertentienetwerken verzamelen individuele gegevens over internetgedrag. Selecteer deze categorie om YouTube video's te kunnen kijken.