Abram, E., Milov, I., Orlov, N., Druten, K., Garnett, E. C., & Planken, P. (2024). Pre-ablation regime light-induced optical changes in nanometer thick metal films. Optics Express, 32(3), 4564-4587. https://doi.org/10.1364/OE.507689[details]
Abram, E., Orlov, N., Garnett, E. C., & Planken, P. (2024). Sub-ablation-threshold light-induced modification of thin ruthenium layers detected using optical reflectance. Journal of Applied Physics, 136(24), Article 245305. https://doi.org/10.1063/5.0233239[details]
Cruciani, L., Vreugdenhil, M., van Vliet, S., Abram, E., van Oosten, D., Bliem, R., van Druten, K., & Planken, P. (2024). Direct laser patterning of ruthenium below the optical diffraction limit. Applied Physics Letters, 124(17), Article 171902. https://doi.org/10.1063/5.0205538[details]
Cruciani, L., van Vliet, S., Troglia, A., Bliem, R., van Druten, K., & Planken, P. (2023). Femtosecond Laser-Induced Emission of Coherent Terahertz Pulses from Ruthenium Thin Films. Journal of Physical Chemistry C, 127(46), 22662-22672. https://doi.org/10.1021/acs.jpcc.3c05525[details]
Nie, Z., Guery, L., Molinero, E. B., Juergens, P., Van Den Hooven, T. J., Wang, Y., Jimenez Galan, A., Planken, P. C. M., Silva, R. E. F., & Kraus, P. M. (2023). Following the Nonthermal Phase Transition in Niobium Dioxide by Time-Resolved Harmonic Spectroscopy. Physical Review Letters, 131(24), Article 243201. https://doi.org/10.1103/PhysRevLett.131.243201[details]
van den Hooven, T. J., & Planken, P. C. M. (2023). Surface-plasmon-enhanced strain-wave detection on segmented gratings. In CLEO : Conference Information and Agenda of Sessions: Technical Conference 07-12 May 2023 : The CLEO Hub 09-11 May 2023 : San Jose McEnery Convention Center, San Jose, California, USA Article SF2R.1 IEEE. https://doi.org/10.1364/CLEO_SI.2023.SF2R.1[details]
van den Hooven, T. J., & Planken, P. C. M. (2023). Surface-plasmon-enhanced strain-wave-induced optical diffraction changes from a segmented grating. Photoacoustics, 31, Article 100497. https://doi.org/10.1016/j.pacs.2023.100497[details]
De Haan, G., Abram, E., Van Den Hooven, T. J., & Planken, P. C. M. (2022). Plasmonic enhancement of photoacoustic strain-waves on gold gratings. AIP advances, 12(2), Article 025227. https://doi.org/10.1063/5.0070630[details]
van den Hooven, T. J., de Haan, G., & Planken, P. C. M. (2022). Enhancement of acoustic-wave induced reflection changes through surface plasmon polaritons. In J. C. Robinson, & M. J. Sendelbach (Eds.), Metrology, Inspection, and Process Control XXXVI: 24-28 April 2022, San Jose, California, United States, 23-27 May 2022, online Article 1205305 (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 12053). SPIE. https://doi.org/10.1117/12.2614383[details]
2021
Zhang, H., Antoncecchi, A., Edward, S., Planken, P., & Witte, S. (2021). Ultrafast laser-induced guided elastic waves in a freestanding aluminum membrane. Physical Review B, 103(6), Article 064303. https://doi.org/10.1103/PhysRevB.103.064303[details]
de Haan, G., Verrina, V., Adam, A. J. L., Zhang, H., & Planken, P. C. M. (2021). Plasmonic enhancement of photoacoustic-induced reflection changes. Applied Optics, 60(24), 7304-7313. https://doi.org/10.1364/AO.432659[details]
de Haan, G., van den Hooven, T. J., & Planken, P. C. M. (2021). Ultrafast laser-induced strain waves in thin ruthenium layers. Optics Express, 29(20), 32051-32067. https://doi.org/10.1364/OE.438286[details]
Antoncecchi, A., Zhang, H., Edward, S., Verrina, V., Planken, P. C. M., & Witte, S. (2020). High-resolution microscopy through optically opaque media using ultrafast photoacoustics. Optics Express, 28(23), 33937-33947. https://doi.org/10.1364/OE.405875[details]
Edward, S., Zhang, H., Setija, I., Verrina, V., Antoncecchi, A., Witte, S., & Planken, P. (2020). Detection of Hidden Gratings through Multilayer Nanostructures Using Light and Sound. Physical Review Applied, 14(1), Article 014015. https://doi.org/10.1103/PhysRevApplied.14.014015[details]
Edward, S., Zhang, H., Witte, S., & Planken, P. C. M. (2020). Laser-induced ultrasonics for detection of low-amplitude grating through metal layers with finite roughness. Optics Express, 28(16), 23374-23387. https://doi.org/10.1364/OE.398134[details]
Verrina, V., Edward, S., Zhang, H., Antoncecchi, A., Witte, S., & Planken, P. (2020). Role of scattering by surface roughness in the photoacoustic detection of hidden micro-structures. Applied Optics, 59(30), 9499-9509. https://doi.org/10.1364/AO.397264[details]
Zhang, H., Antoncecchi, A., Edward, S., Setija, I., Planken, P., & Witte, S. (2020). Unraveling Phononic, Optoacoustic, and Mechanical Properties of Metals with Light-Driven Hypersound. Physical Review Applied, 13(1), Article 014010. https://doi.org/10.1103/PhysRevApplied.13.014010[details]
de Haan, G., Hernandez-Rueda, J., & Planken, P. C. M. (2020). Femtosecond time-resolved pump-probe measurements on percolating gold in the ablation regime. Optics Express, 28(8), 12093-12107. https://doi.org/10.1364/OE.390509[details]
Edward, S., Antoncecchi, A., Zhang, H., Sielcken, H., Witte, S., & Planken, P. C. M. (2018). Detection of periodic structures through opaque metal layers by optical measurements of ultrafast electron dynamics. Optics Express, 26(18), 23380-23396. https://doi.org/10.1364/OE.26.023380[details]
Planken, P. C. M., Edward, S., Witte, S., Antoncecchi, A., Zhang, H., Goorden, S. A., Huisman, S. R., Setija, I. D., & Vles, D. F. (2020). Alignment Measurement System. (Patent No. US 2020/0142319 A1).
Planken, P. C. M., Witte, S., Antoncecchi, A., Edward, S., Zhang, H., Eikema, K. S. E., Goorden, S. A., Huisman, S. R., & Setija, I. D. (2020). Method and apparatus for measuring a structure on a substrate. (Patent No. WO2018/137925).
Abram, E. (2025). What is Light-Induced Damage? Pre-ablation regime optical and morphological changes in nanometer thick films and grating structures. [Thesis, fully internal, Universiteitsbibliotheek]. [details]
Cruciani, L. (2025). Ruthenium thin films: Terahertz generation and direct laser patterning. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
van den Hooven, T. J. (2025). Broadband optical detection of ultrafast strain waves in metals. [Thesis, fully internal, Universiteitsbibliotheek]. [details]
de Haan, G. (2022). Enhanced generation and detection of ultrafast laser-induced acoustic signals. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Verrina, V. (2021). Laser-induced ultrasound for the detection of buried micro- and nano-structures. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.