Pelucchi, E., Fagas, G., Aharonovich, I., Englund, D., Figueroa, E., Gong, Q., Hannes, H., Liu, J., Lu, C. Y., Matsuda, N., Pan, J. W., Schreck, F., Sciarrino, F., Silberhorn, C., Wang, J., & Jöns, K. D. (2022). The potential and global outlook of integrated photonics for quantum technologies. Nature Reviews Physics, 4(3), 194–208. https://doi.org/10.1038/s42254-021-00398-z[details]
Urech, A., Knottnerus, I. H. A., Spreeuw, R. J. C., & Schreck, F. (2022). Narrow-line imaging of single strontium atoms in shallow optical tweezers. Physical Review Research, 4(2), [023245]. https://doi.org/10.1103/PhysRevResearch.4.023245[details]
Weggemans, J. R., Urech, A., Rausch, A., Spreeuw, R., Boucherie, R., Schreck, F., Schoutens, K., Minář, J., & Speelman, F. (2022). Solving correlation clustering with QAOA and a Rydberg qudit system: a full-stack approach. Quantum, 6, [687]. https://doi.org/10.22331/Q-2022-04-13-687[details]
Kazakov, G., Dubey, S., Famà, F., Zhou, S., Beli Silva, C., Schäffer, S. A., Bennetts, S., & Schreck, F. (2021). Towards an Active Optical Clock using an Optical Conveyor within a Ring Cavity. In IEEE EFTF-IFCS 2021: 2021 Joint Conference of the European Frequency and Time Forum & the IEEE International Frequency Control Symposium : July 7-17, 2021, virtual conference : 2021 symposium proceedings (pp. 290-294). IEEE. https://doi.org/10.1109/EFTF/IFCS52194.2021.9604232[details]
Knottnerus, I. H. A., Pyatchenkov, S., Onishchenko, O., Urech, A., Schreck, F., & Siviloglou, G. A. (2020). Microscope objective for imaging atomic strontium with 0.63 micrometer resolution. Optics Express, 28(8), 11106-11116. https://doi.org/10.1364/OE.388809[details]
2019
Chen, C-C., Bennetts, S., González Escudero, R., Pasquiou, B., & Schreck, F. (2019). Continuous Guided Strontium Beam with High Phase-Space Density. Physical Review Applied, 12(4), [044014]. https://doi.org/10.1103/PhysRevApplied.12.044014[details]
Lizunova, M. A., Schreck, F., Morais Smith, C., & Van Wezel, J. (2019). Visualizing the connection between edge states and the mobility edge in adiabatic and nonadiabatic topological charge transport. Physical Review B, 99(11), [115114]. https://doi.org/10.1103/PhysRevB.99.115114[details]
Onishchenko, O., Pyatchenkov, S., Urech, A., Chen, C-C., Bennetts, S., Siviloglou, G. A., & Schreck, F. (2019). Frequency of the ultranarrow 1S0 - 3P2 transition in 87Sr. Physical Review A, 99(5), [052503]. https://doi.org/10.1103/PhysRevA.99.052503[details]
Tino, G. M., Bassi, A., Bianco, G., Bongs, K., Bouyer, P., Cacciapuoti, L., ... Zhan, M. (2019). SAGE: A proposal for a space atomic gravity explorer. European Physical Journal D, 73(11), [228]. https://doi.org/10.1140/epjd/e2019-100324-6[details]
2018
Barbé, V., Ciamei, A., Pasquiou, B., Reichsöllner, L., Schreck, F., Żuchowski, P. S., & Hutson, J. M. (2018). Observation of Feshbach resonances between alkali and closed-shell atoms. Nature Physics, 14(9), 881-884. https://doi.org/10.1038/s41567-018-0169-x[details]
Ciamei, A., Szczepkowski, J., Bayerle, A., Barbé, V., Reichsöllner, L., Tzanova, S. M., ... Schreck, F. (2018). The RbSr 2Σ+ ground state investigated via spectroscopy of hot and ultracold molecules. Physical Chemistry Chemical Physics, 20(41), 26221-26240. https://doi.org/10.1039/c8cp03919d[details]
Ciamei, A., Bayerle, A., Chen, C-C., Pasquiou, B., & Schreck, F. (2017). Efficient production of long-lived ultracold Sr2 molecules. Physical Review A, 96(1), [013406]. https://doi.org/10.1103/PhysRevA.96.013406[details]
Bongs, K., Malcolm, J., Ramelloo, C., Zhu, L., Boyer, V., Valenzuela, T., Maclean, J., Piccardo-Selg, A., Mellor, C., Fernholz, T., Fromhold, M., Krüger, P., Hellmig, O., Grote, A., Dörscher, S., Duncker, H., Windpassinger, P., Sengstock, K., Becker, C., ... Wicht, A. (2014). iSense: A technology platform for cold atom based: Quantum technologies. In Quantum Information and Measurement, QIM 2014 (Optics InfoBase Conference Papers). Optical Society of America (OSA). https://doi.org/10.1364/qim.2014.qtu3b.1
Jag, M., Zaccanti, M., Cetina, M., Lous, R. S., Schreck, F., Grimm, R., Petrov, D. S., & Levinsen, J. (2014). Observation of a strong atom-dimer attraction in a mass-imbalanced fermi-fermi mixture. Physical Review Letters, 112(7), [075302]. https://doi.org/10.1103/PhysRevLett.112.075302
Olmos, B., Yu, D., Singh, Y., Schreck, F., Bongs, K., & Lesanovsky, I. (2013). Long-range interacting many-body systems with alkaline-earth-metal atoms. Physical Review Letters, 110(14), [143602]. https://doi.org/10.1103/PhysRevLett.110.143602
Pasquiou, B., Bayerle, A., Tzanova, S. M., Stellmer, S., Szczepkowski, J., Parigger, M., Grimm, R., & Schreck, F. (2013). Quantum degenerate mixtures of strontium and rubidium atoms. Physical Review A - Atomic, Molecular, and Optical Physics, 88(2), [023601]. https://doi.org/10.1103/PhysRevA.88.023601
Stellmer, S., Grimm, R., & Schreck, F. (2013). Production of quantum-degenerate strontium gases. Physical Review A - Atomic, Molecular, and Optical Physics, 87(1), [013611]. https://doi.org/10.1103/PhysRevA.87.013611
Stellmer, S., Pasquiou, B., Grimm, R., & Schreck, F. (2013). Laser cooling to quantum degeneracy. Physical Review Letters, 110(26), [263003]. https://doi.org/10.1103/PhysRevLett.110.263003
2012
Kohstall, C., Zaccanti, M., Jag, M., Trenkwalder, A., Massignan, P., Bruun, G. M., Schreck, F., & Grimm, R. (2012). Metastability and coherence of repulsive polarons in a strongly interacting Fermi mixture. Nature, 485(7400), 615-618. https://doi.org/10.1038/nature11065
Stellmer, S., Pasquiou, B., Grimm, R., & Schreck, F. (2012). Creation of ultracold Sr 2 molecules in the electronic ground state. Physical Review Letters, 109(11), [115302]. https://doi.org/10.1103/PhysRevLett.109.115302
2011
Naik, D., Trenkwalder, A., Kohstall, C., Spiegelhalder, F. M., Zaccanti, M., Hendl, G., Schreck, F., Grimm, R., Hanna, T. M., & Julienne, P. S. (2011). Feshbach resonances in the 6Li-40K Fermi-Fermi mixture: Elastic versus inelastic interactions. European Physical Journal D, 65(1-2), 55-65. https://doi.org/10.1140/epjd/e2010-10591-2
Stellmer, S., Grimm, R., & Schreck, F. (2011). Detection and manipulation of nuclear spin states in fermionic strontium. Physical Review A - Atomic, Molecular, and Optical Physics, 84(4), [043611]. https://doi.org/10.1103/PhysRevA.84.043611
Trenkwalder, A., Kohstall, C., Zaccanti, M., Naik, D., Sidorov, A. I., Schreck, F., & Grimm, R. (2011). Hydrodynamic expansion of a strongly interacting Fermi-Fermi mixture. Physical Review Letters, 106(11), [115304]. https://doi.org/10.1103/PhysRevLett.106.115304
2010
Spiegelhalder, F. M., Trenkwalder, A., Naik, D., Kerner, G., Wille, E., Hendl, G., Schreck, F., & Grimm, R. (2010). All-optical production of a degenerate mixture of Li6 and K40 and creation of heteronuclear molecules. Physical Review A - Atomic, Molecular, and Optical Physics, 81(4), [043637]. https://doi.org/10.1103/PhysRevA.81.043637
Stellmer, S., Tey, M. K., Grimm, R., & Schreck, F. (2010). Bose-Einstein condensation of Sr86. Physical Review A - Atomic, Molecular, and Optical Physics, 82(4), [041602]. https://doi.org/10.1103/PhysRevA.82.041602
Tey, M. K., Stellmer, S., Grimm, R., & Schreck, F. (2010). Double-degenerate Bose-Fermi mixture of strontium. Physical Review A - Atomic, Molecular, and Optical Physics, 82(1), [011608]. https://doi.org/10.1103/PhysRevA.82.011608
2009
Spiegelhalder, F. M., Trenkwalder, A., Naik, D., Hendl, G., Schreck, F., & Grimm, R. (2009). Collisional Stability of K40 Immersed in a Strongly Interacting Fermi Gas of Li6. Physical Review Letters, 103(22), [223203]. https://doi.org/10.1103/PhysRevLett.103.223203
Spiegelhalder, F., Trenkwalder, A., Naik, D., Wille, E., Hendl, G., Schreck, F., & Grimm, R. (2009). All-optical production of a doubly degenerate fermi-fermi mixture. In European Quantum Electronics Conference, EQEC 2009 (Optics InfoBase Conference Papers). Optical Society of America.
Stellmer, S., Tey, M. K., Huang, B., Grimm, R., & Schreck, F. (2009). Bose-Einstein condensation of strontium. Physical Review Letters, 103(20), [200401]. https://doi.org/10.1103/PhysRevLett.103.200401
2005
Chuu, C. S., Hanssen, J., Meyrath, T., Price, G., Schreck, F., & Raizen, M. (2005). Bose-Einstein condensate in a box. In Frontiers in Optics, FiO 2005 (Optics InfoBase Conference Papers). Optical Society of America (OSA). https://doi.org/10.1364/ls.2005.ltub4
Chuu, C. S., Schreck, F., Meyrath, T. P., Hanssen, J. L., Price, G. N., & Raizen, M. G. (2005). Direct observation of sub-poissonian number statistics in a degenerate bose gas. Physical Review Letters, 95(26), [260403]. https://doi.org/10.1103/PhysRevLett.95.260403
Meyrath, T. P., Schreck, F., Hanssen, J. L., Chuu, C. S., & Raizen, M. G. (2005). A high frequency optical trap for atoms using Hermite-Gaussian beams. Optics Express, 13(8), 2843-2851. https://doi.org/10.1364/OPEX.13.002843
2003
Schreck, F. (2003). Mixtures of ultracold gases: Fermi sea and Bose-Einstein condensate of lithium isotopes. Annales de Physique, 28(2). https://doi.org/10.1051/anphys:2003004
2002
Khaykovich, L., Schreck, F., Bourdel, T., Cubizolles, J., Ferrari, G., & Salomon, C. (2002). Production of a Matter-Wave Bright Soliton from a Bose-Einstein Condensate. In Quantum Electronics and Laser Science Conference, QELS 2002 [QPD7] (Optics InfoBase Conference Papers). Optica Publishing Group (formerly OSA).
Khaykovich, L., Schreck, F., Ferrari, G., Bourdel, T., Cubizolles, J., Carr, L. D., Castin, Y., & Salomon, C. (2002). Formation of a matter-wave bright soliton. Science, 296(5571), 1290-1293. https://doi.org/10.1126/science.1071021
2001
Schreck, F., Ferrari, G., Corwin, K. L., Cubizolles, J., Khaykovich, L., Mewes, M. O., & Salomon, C. (2001). Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy. Physical Review A. Atomic, Molecular, and Optical Physics, 64(1), 114021-114024. [011402]. https://doi.org/10.1103/PhysRevA.64.011402
Schreck, F., Khaykovich, L., Corwin, K. L., Ferrari, G., Bourdel, T., Cubizolles, J., & Salomon, C. (2001). Quasipure Bose-Einstein condensate immersed in a Fermi sea. Physical Review Letters, 87(8), 804031-804034. [080403]. https://doi.org/10.1103/PhysRevLett.87.080403
2000
Mewes, M. O., Ferrari, G., Schreck, F., Sinatra, A., & Salomon, C. (2000). Simultaneous magneto-optical trapping of two lithium isotopes. Physical Review A - Atomic, Molecular, and Optical Physics, 61(1), 114031-114034. [011403].
1999
Ferrari, G., Mewes, M. O., Schreck, F., & Salomon, C. (1999). High-power multiple-frequency narrow-linewidth laser source based on a semiconductor tapered amplifier. Optics Letters, 24(3), 151-153. https://doi.org/10.1364/OL.24.000151
1998
Ernst, U., Marte, A., Schreck, F., Schuster, J., & Rempe, G. (1998). Bose-Einstein condensation in a pure Ioffe-Pritchard field configuration. Europhysics Letters, 41(1), 1-6. https://doi.org/10.1209/epl/i1998-00107-2
Ernst, U., Schuster, J., Schreck, F., Marte, A., Kuhn, A., & Rempe, G. (1998). Free expansion of a Bose-Einstein condensate from an Ioffe-Pritchard magnetic trap. Applied Physics B: Lasers and Optics, 67(6), 719-722. https://doi.org/10.1007/s003400050571
Chen, C. C., González Escudero, R., Minar, J., Bennetts, S. P., Schreck, F. & Pasquiou, B. B. (15-9-2021). arXiv:2012.07605 Raw and analyzed data, analysis tools, etc. Universiteit van Amsterdam. https://doi.org/10.21942/uva.16610143.v1
2022
González Escudero, R. (2022). Quantum gases are forever: Achieving continuous Bose-Einstein condensation. [details]
Schreck, F., Urech, A., Knottnerus, I. & Spreeuw, R. J. C. (26-4-2022). Dataset of "Narrow-line imaging of single strontium atoms in shallow optical tweezers". Universiteit van Amsterdam. https://doi.org/10.21942/uva.19658910.v1
2021
Chen, C. C., González Escudero, R., Minar, J., Bennetts, S. P., Schreck, F. & Pasquiou, B. B. (15-9-2021). arXiv:2012.07605 Raw and analyzed data, analysis tools, etc. Universiteit van Amsterdam. https://doi.org/10.21942/uva.16610143.v1
González Escudero, R., Chen, C.-C., Bennetts, S. P., Pasquiou, B. B. & Schreck, F. (14-7-2021). arXiv:2104.06814 Raw Data. analysis tools etc. Universiteit van Amsterdam. https://doi.org/10.21942/uva.14931798.v2
De UvA maakt gebruik van cookies en daarmee vergelijkbare technieken voor het functioneren, meten en optimaliseren van de website. Ook worden er cookies geplaatst om bijv. YouTube filmpjes te kunnen tonen en voor marketingdoeleinden. Deze laatste categorie betreffen de tracking cookies. Uw internetgedrag kan worden gevolgd door middel van deze tracking cookies. Door op “Accepteer alle cookies” te klikken gaat u hiermee akkoord. Lees ook het UvA Privacy statement
Noodzakelijk
Cookies noodzakelijk voor het basisfunctioneren van de website. Deze cookies worden bijvoorbeeld ingezet om het inloggen voor studenten en medewerkers mogelijk te maken.
Noodzakelijk & Optimalisatie
Cookies die worden geplaatst om anoniem gegevens te verzamelen over het gebruik van de website om deze te verbeteren.
Noodzakelijk & Optimalisatie & Marketing
Cookies die in staat stellen bezoekers te volgen en van gepersonaliseerde advertenties te voorzien. Externe advertentienetwerken verzamelen individuele gegevens over internetgedrag. Selecteer deze categorie om YouTube video's te kunnen kijken.