Voor de beste ervaring schakelt u JavaScript in en gebruikt u een moderne browser!
Je gebruikt een niet-ondersteunde browser. Deze site kan er anders uitzien dan je verwacht.

Dr. M. (Mototaka) Suzuki

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Swammerdam Institute for Life Sciences

  • Science Park 904
  • Kamernummer: C4.104
  • Postbus 94246
    1090 GE Amsterdam
Social media
  • Career
    • Ph.D. in Robotics, École Polytechnique Fédérale de Lausanne, Switzerland
    • Postdoc in Monkey Neurophysiology, Columbia University, USA
    • Postdoc in Rodent Neurophysiology, Humboldt-Universität zu Berlin, Germany
    • Assistant Professor in Neuroscience, University of Amsterdam, Netherlands


  • Select Publications

    Suzuki, M., Aru, J. & Larkum, M.E. (2021) Double-µPeriscope, a tool for multi-layer optical recordings, optogenetic stimulations or both.
    eLife 10:e72894. https://doi.org/10.7554/eLife.72894

    Aru, J., Suzuki, M. & Larkum, M.E. (2020) Cellular mechanisms of conscious processing.
    Trends in Cognitive Sciences 24(10):814-825. https://doi.org/10.1016/j.tics.2020.07.006

    Suzuki, M. & Larkum, M.E. (2020) General anesthesia decouples cortical pyramidal neurons.
    Cell 180(4):666-676. https://doi.org/10.1016/j.cell.2020.01.024

    Suzuki, M. & Larkum, M.E. (2017) Dendritic calcium spikes are clearly detectable at the cortical surface.
    Nature Communications 8(1):276. http://doi.org/10.1038/s41467-017-00282-4

    Suzuki, M. & Gottlieb, J. (2013) Distinct neural mechanisms of distractor suppression in the frontal and parietal lobe.
    Nature Neuroscience 16(1):98-104. http://dx.doi.org/10.1038/nn.3282

  • Research Interests

    1. Dendritic Integration Theory (DIT) and its experimental validation

    In 2020 Jaan Aru, Matthew Larkum and I formulated the Dendritic Integration Theory (DIT; Aru, Suzuki & Larkum, Trends Cogn Sci 2020). The theory posits that apical dendrites of cortical layer 5 pyramidal neurons play a central role in integrating large-scale cortico-cortical and thalamo-cortical loops that are essential for conscious perception. Unlike many abstract theories previously proposed, a distinguishing feature of DIT is that the theory spotlights a specific cellular mechanism—pyramidal cell dendrites—as the fulcrum at which these two apparently-orthogonal loops intersect.

    Aru, Suzuki & Larkum, Trends Cogn Sci 2020

    DIT makes a lot of testable predictions and my team will experimentally test these predictions using novel micro-optical tools (see below). The research questions of particular relevance to DIT include, but not limited to:

    • Does sleep decouple cortical pyramidal neurons like general anesthesia does? Does the coupling change during REM and/or non-REM sleep?
    • Does local decoupling of pyramidal neurons lead to loss of consciousness? Are there any hotspots?
    • What are the relative contributions of parallel thalamo-cortical pathways to the coupling of cortical pyramidal neurons?

    2. Developing novel neuroscientific tools

    My previous studies demonstrated that novel micro-optical tools enabled unprecedented experiments and led to unexpected findings (Suzuki & Larkum, Nat Commun 2017; Suzuki & Larkum, Cell 2020; Suzuki et al., eLife 2021). My team aims to further develop novel tools that have the potential to enable us to make ground-breaking discoveries.

    Suzuki & Larkum, Nat Commun 2017
    Suzuki, Aru & Larkum, eLife 2021
  • Collaborations

    Coming soon

  • Nevenwerkzaamheden
    Geen nevenwerkzaamheden