Jiang, J., Shen, Y., Wang, J., Wang, J., Zhang, C., Wang, J., & Ferreira, V. (2025). GEPT-Net: An efficient geometry enhanced point transformer for shield tunnel leakage segmentation. ISPRS Journal of Photogrammetry and Remote Sensing, 221, 20-43. https://doi.org/10.1016/j.isprsjprs.2025.01.032
Jiang, J., Shen, Y., Wang, J., Zang, Y., Wu, W., Wang, J., Li, J., & Ferreira, V. (2025). Boosted bagging: A hybrid ensemble deep learning framework for point cloud semantic segmentation of shield tunnel leakage. Tunnelling and Underground Space Technology, 164, Article 106842. https://doi.org/10.1016/j.tust.2025.106842
Kissling, W. D., Mulder, W., Wang, J., & Shi, Y. (2025). Data of vegetation structure metrics retrieved from airborne laser scanning surveys for European demonstration sites. Data in Brief, 60, Article 111548. https://doi.org/10.1016/j.dib.2025.111548[details]
Shi, Y., Wang, J., & Kissling, W. D. (2025). Multi-temporal high-resolution data products of ecosystem structure derived from country-wide airborne laser scanning surveys of the Netherlands. Earth System Science Data, 17(7), 3641-3677. https://doi.org/10.5194/essd-17-3641-2025[details]
Wang, J. (2025). AdLeaf: Quantitative Leaf Reconstruction From TLS Point Clouds. IEEE Transactions on geoscience and remote sensing, 63. https://doi.org/10.1109/TGRS.2025.3608325
Wang, J., Cornelissen, P., & Kissling, W. D. (2025). A workflow for extracting ungulate trails in wetlands using 3D point clouds obtained from airborne laser scanning. Frontiers in Remote Sensing, 6, Article 1599128. https://doi.org/10.3389/frsen.2025.1599128[details]
Kissling, W. D., Shi, Y., Wang, J., Walicka, A., George, C., Moeslund, J. E., & Gerard, F. (2024). Towards consistently measuring and monitoring habitat condition with airborne laser scanning and unmanned aerial vehicles. Ecological Indicators, 169, Article 112970. https://doi.org/10.1016/j.ecolind.2024.112970[details]
Wang, J., Kissling, D. & Shi, Y. (30-8-2024). Datasets for testing the robustness of LiDAR vegetation metrics to varying point densities. Zenodo. https://doi.org/10.5281/zenodo.13619388
Wang, J., Shi, Y. & Kissling, D. (19-7-2024). Datasets for testing the robustness of LiDAR vegetation metrics to varying point densities. Zenodo. https://doi.org/10.5281/zenodo.12783696
Wang, J., Shi, Y. & Kissling, D. (2-9-2024). Datasets for testing the robustness of LiDAR vegetation metrics to varying point densities. Zenodo. https://doi.org/10.5281/zenodo.13628041
Shen, Y., Ji, S., Wang, J., Liu, W., Wang, J., Chen, Y., Deng, Z., Fu, S., & Chen, D. (2024). Coarse-to-Fine Separation of Wood and Leaf from MLS Street Tree Point Clouds Using Branch Tilt Prior and Enhanced Shortest Path Tracing. IEEE Transactions on geoscience and remote sensing, 62, Article 5708118. https://doi.org/10.1109/TGRS.2024.3488696[details]
Wang, J., Shi, Y. & Kissling, D. (2-9-2024). Datasets for testing the robustness of LiDAR vegetation metrics to varying point densities. Zenodo. https://doi.org/10.5281/zenodo.13628041
Wang, J., Kissling, D. & Shi, Y. (30-8-2024). Datasets for testing the robustness of LiDAR vegetation metrics to varying point densities. Zenodo. https://doi.org/10.5281/zenodo.13619388
Wang, J., Shi, Y. & Kissling, D. (19-7-2024). Datasets for testing the robustness of LiDAR vegetation metrics to varying point densities. Zenodo. https://doi.org/10.5281/zenodo.12783696
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.