Codsi, J., & van de Wetering, J. (2025). Classically simulating intermediate-scale instantaneous quantum polynomial circuits through a random graph approach. Physical Review A, 111(1), Article 012422. https://doi.org/10.1103/PhysRevA.111.012422[details]
Li, S. M., Mosca, M., Ross, N. J., van de Wetering, J., & Zhao, Y. (2025). A Complete and Natural Rule Set for Multi-Qutrit Clifford Circuits. Electronic Proceedings in Theoretical Computer Science, 426, 23-78. https://doi.org/10.4204/EPTCS.426.2[details]
Ruiz, F. J. R., Laakkonen, T., Bausch, J., Balog, M., Barekatain, M., Heras, F. J. H., Novikov, A., Fitzpatrick, N., Romera-Paredes, B., van de Wetering, J., Fawzi, A., Meichanetzidis, K., & Kohli, P. (2025). Quantum circuit optimization with AlphaTensor. Nature Machine Intelligence, 7(3), 374-385. https://doi.org/10.1038/s42256-025-01001-1[details]
Glaudell, A. N., Ross, N. J., van de Wetering, J., & Yeh, L. (2024). Exact Synthesis of Multiqutrit Clifford-Cyclotomic Circuits. Electronic Proceedings in Theoretical Computer Science, 406, 44-62. https://doi.org/10.4204/EPTCS.406.2[details]
Kissinger, A., & van de Wetering, J. (2024). Scalable Spider Nests: (...Or How to Graphically Grok Transversal Non-Clifford Gates). Electronic Proceedings in Theoretical Computer Science, 406, 79-95. https://doi.org/10.4204/EPTCS.406.4[details]
Laakkonen, T., Meichanetzidis, K., & van de Wetering, J. (2024). A Graphical #SAT Algorithm for Formulae with Small Clause Density. Electronic Proceedings in Theoretical Computer Science, 406, 137-161. https://doi.org/10.4204/EPTCS.406.7[details]
Laakkonen, T., Meichanetzidis, K., & van de Wetering, J. (2023). Picturing Counting Reductions with the ZH-Calculus. Electronic Proceedings in Theoretical Computer Science, 384, 89-113. https://doi.org/10.4204/EPTCS.384.6[details]
Poór, B., Booth, R. I., Carette, T., van de Wetering, J., & Yeh, L. (2023). The Qupit Stabiliser ZX-travaganza: Simplified Axioms, Normal Forms and Graph-Theoretic Simplification. Electronic Proceedings in Theoretical Computer Science, 384, 220-264. https://doi.org/10.4204/EPTCS.384.13[details]
Roy, P., van de Wetering, J., & Yeh, L. (2023). The Qudit ZH-Calculus: Generalised Toffoli+Hadamard and Universality. Electronic Proceedings in Theoretical Computer Science, 384, 142-170. https://doi.org/10.4204/EPTCS.384.9[details]
van de Wetering, J., & Yeh, L. (2023). Building Qutrit Diagonal Gates from Phase Gadgets. Electronic Proceedings in Theoretical Computer Science, 394, 46-65. https://doi.org/10.4204/EPTCS.394.4[details]
East, R. D. P., Van De Wetering, J., Chancellor, N., & Grushin, A. G. (2022). AKLT-States as ZX-Diagrams: Diagrammatic Reasoning for Quantum States. PRX quantum, 3(1), Article 010302. https://doi.org/10.1103/PRXQuantum.3.010302
Glaudell, A. N., Ross, N. J., van de Wetering, J., & Yeh, L. (2022). Qutrit Metaplectic Gates Are a Subset of Clifford+T. In F. Le Gall, & T. Morimae (Eds.), 17th Conference on the Theory of Quantum Computation, Communication and Cryptography, TQC 2022 Article 12 (Leibniz International Proceedings in Informatics, LIPIcs; Vol. 232). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.TQC.2022.12
Kissinger, A., & Van De Wetering, J. (2022). Simulating quantum circuits with ZX-calculus reduced stabiliser decompositions. Quantum Science and Technology, 7(4), Article 044001. https://doi.org/10.1088/2058-9565/ac5d20
Kissinger, A., van de Wetering, J., & Vilmart, R. (2022). Classical Simulation of Quantum Circuits with Partial and Graphical Stabiliser Decompositions. In F. Le Gall, & T. Morimae (Eds.), 17th Conference on the Theory of Quantum Computation, Communication and Cryptography, TQC 2022 Article 5 (Leibniz International Proceedings in Informatics, LIPIcs; Vol. 232). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.TQC.2022.5
Westerbaan, B., & van de Wetering, J. (2022). A computer scientist’s reconstruction of quantum theory* * BW: The majority of the work was carried out while employed at University College London and Radboud Universiteit Nijmegen. Journal of Physics A: Mathematical and Theoretical, 55(38), Article 384002. https://doi.org/10.1088/1751-8121/ac8459
Yeh, L., & van de Wetering, J. (2022). Constructing All Qutrit Controlled Clifford+T gates in Clifford+T. In C. A. Mezzina, & K. Podlaski (Eds.), Reversible Computation - 14th International Conference, RC 2022, Proceedings (pp. 28-50). (Lecture Notes in Computer Science; Vol. 13354). Springer. https://doi.org/10.1007/978-3-031-09005-9_3
de Beaudrap, N., Kissinger, A., & van de Wetering, J. (2022). Circuit Extraction for ZX-Diagrams Can Be #P-Hard. In M. Bojanczyk, E. Merelli, & D. P. Woodruff (Eds.), 49th EATCS International Conference on Automata, Languages, and Programming, ICALP 2022 Article 119 (Leibniz International Proceedings in Informatics, LIPIcs; Vol. 229). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ICALP.2022.119
2021
Backens, M., Miller-Bakewell, H., De Felice, G., Lobski, L., & Van de Wetering, J. (2021). There and back again: A circuit extraction tale. Quantum, 5. https://doi.org/10.22331/Q-2021-03-25-421
Lemonnier, L., van de Wetering, J., & Kissinger, A. (2021). Hypergraph simplification: Linking the path-sum approach to the ZH-calculus. Electronic Proceedings in Theoretical Computer Science, 340, 188-212. https://doi.org/10.4204/EPTCS.340.10
Van De Wetering, J. (2021). Constructing quantum circuits with global gates. New Journal of Physics, 23(4), Article 043015. https://doi.org/10.1088/1367-2630/abf1b3
2020
Duncan, R., Kissinger, A., Perdrix, S., & van de Wetering, J. (2020). Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus. Quantum, 4. https://doi.org/10.22331/Q-2020-06-04-279
Kissinger, A., & Van De Wetering, J. (2020). Reducing the number of non-Clifford gates in quantum circuits. Physical Review A, 102(2), Article 022406. https://doi.org/10.1103/PhysRevA.102.022406
Kissinger, A., & van de Wetering, J. (2020). PyZX: Large scale automated diagrammatic reasoning. Electronic Proceedings in Theoretical Computer Science, 318, 229-241. https://doi.org/10.4204/EPTCS.318.14
Westerbaan, A., Westerbaan, B., & Van De Wetering, J. (2020). A characterisation of ordered abstract probabilities. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2020 (pp. 944-957). Association for Computing Machinery. https://doi.org/10.1145/3373718.3394742
van de Wetering, J. (2020). Commutativity in Jordan operator algebras. Journal of Pure and Applied Algebra, 224(11), Article 106407. https://doi.org/10.1016/j.jpaa.2020.106407
2019
Kissinger, A., & van de Wetering, J. (2019). Universal MBQC with generalised parity-phase interactions and pauli measurements. Quantum, 3. https://doi.org/10.22331/q-2019-04-26-134
Van De Wetering, J. (2019). Sequential product spaces are Jordan algebras. Journal of Mathematical Physics, 60(6), Article 062201. https://doi.org/10.1063/1.5093504
Van De Wetering, J. (2018). Ordering quantum states and channels based on positive Bayesian evidence. Journal of Mathematical Physics, 59(10), Article 102201. https://doi.org/10.1063/1.5023474
Van de Wetering, J. (2018). Three characterisations of the sequential product. Journal of Mathematical Physics, 59(8), Article 082202. https://doi.org/10.1063/1.5031089
2024
van de Wetering, J., Yeung, R., Laakkonen, T., & Kissinger, A. (2024). Optimal compilation of parametrised quantum circuits. (v1 ed.) ArXiv. https://doi.org/10.48550/arXiv.2401.12877
Codsi, J., & van de Wetering, J. (2022). Classically Simulating Quantum Supremacy IQP Circuits trough a Random Graph Approach. ArXiv. https://doi.org/10.48550/arXiv.2212.08609
Laakkonen, T., Meichanetzidis, K., & van de Wetering, J. (2022). A Graphical SAT Algorithm for Formulae with Small Clause Density. (v1 ed.) ArXiv. https://doi.org/10.48550/arXiv.2212.08048
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.