For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Boelrijk, J., van Herwerden, D., Ensing, B., Forré, P., & Samanipour, S. (2023). Predicting RP-LC retention indices of structurally unknown chemicals from mass spectrometry data. Journal of Cheminformatics, 15(1), 28. https://doi.org/10.1186/s13321-023-00699-8
Forré, P., Miller, B. K., & Weniger, C. (2023). Contrastive Neural Ratio Estimation. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), 36th Conference on Neural Information Processing Systems (NeurIPS 2022): New Orleans, Louisiana, USA, 28 November-9 December 2022 (Vol. 5, pp. 3262-3278). (Advances in Neural Information Processing Systems; Vol. 35). Neural Information Processing Systems Foundation. https://doi.org/10.48550/arXiv.2210.06170[details]
Bos, T. S., Boelrijk, J., Molenaar, S. R. A., Veer, B. V. ., Niezen, L. E., van Herwerden, D., Samanipour, S., Stoll, D. R., Forré, P., Ensing, B., Somsen, G. W., & Pirok, B. W. J. (2022). Chemometric Strategies for Fully Automated Interpretive Method Development in Liquid Chromatography. Analytical Chemistry, 94(46), 16060-16068. https://doi.org/10.1021/acs.analchem.2c03160[details]
Cole, A., Forre, P., Louppe, G., Miller, B. K., & Weniger, C. (2022). Truncated Marginal Neural Ratio Estimation. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. Wortman Vaughan (Eds.), 35th Conference on Neural Information Processing Systems (NeurIPS 2021) : online, 6-14 December 2021 (Vol. 1, pp. 129-143). (Advances in Neural Information Processing Systems; Vol. 34). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2021/hash/01632f7b7a127233fa1188bd6c2e42e1-Abstract.html[details]
Miller, B., Cole, A., Forré, P., Louppe, G. & Weniger, C. (2021). Truncated Marginal Neural Ratio Estimation - Data. Zenodo. https://doi.org/10.5281/zenodo.5592427
Forre, P., Hoogeboom, E., Jaini, P., Nielsen, D., & Welling, M. (2022). Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. Wortman Vaughan (Eds.), 35th Conference on Neural Information Processing Systems (NeurIPS 2021) : online, 6-14 December 2021 (Vol. 15, pp. 12454-12465). (Advances in Neural Information Processing Systems; Vol. 34). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2021/hash/67d96d458abdef21792e6d8e590244e7-Abstract.html[details]
Lippert, F., Kranstauber, B., Forré, P. D., & van Loon, E. E. (2022). Learning to predict spatiotemporal movement dynamics from weather radar networks. Methods in Ecology and Evolution, 13(12), 2811-2826. https://doi.org/10.1111/2041-210X.14007[details]
Lippert, F., Kranstauber, B., Forré, P. & van Loon, E. . (2022). Data from: Learning to predict spatio-temporal movement dynamics from static sensor networks. Zenodo. https://doi.org/10.5281/zenodo.6364941
Lippert, F., Kranstauber, B., Forré, P. & van Loon, E. . (2022). Data from: Learning to predict spatio-temporal movement dynamics from weather radar networks. Zenodo. https://doi.org/10.5281/zenodo.6874789
Ruhe, D., Kuiack, M., Rowlinson, A., Wijers, R., & Forré, P. (2022). Detecting dispersed radio transients in real time using convolutional neural networks. Astronomy and Computing, 38, [100512]. https://doi.org/10.1016/j.ascom.2021.100512[details]
Ruhe, D., Wong, K., Cranmer, M., & Forré, P. (2022). Normalizing Flows for Hierarchical Bayesian Analysis: A Gravitational Wave Population Study. In Machine Learning and the Physical Sciences: Workshop at the 36th conference on Neural Information Processing Systems (NeurIPS) : December 3, 2022 ML4PS. https://doi.org/10.48550/arXiv.2211.09008[details]
Apostol, A. C., Stol, M. C., & Forré, P. (2021). FlipOut: Uncovering Redundant Weights via Sign Flipping. In M. Baratchi, L. Cao, W. A. Kosters, J. Lijffijt, J. N. van Rijn, & F. W. Takes (Eds.), Artificial Intelligence and Machine Learning: 32nd Benelux Conference, BNAIC/Benelearn 2020, Leiden, The Netherlands, November 19–20, 2020 : revised selected papers (pp. 15-29). (Communications in Computer and Information Science; Vol. 1398). Springer. https://doi.org/10.1007/978-3-030-76640-5_2[details]
Bongers, S., Forré, P., Peters, J., & Mooij, J. M. (2021). Foundations of structural causal models with cycles and latent variables. The Annals of Statistics, 49(5), 2885-2915. https://doi.org/10.1214/21-AOS2064[details]
Falorsi, L., de Haan, P., Davidson, T. R., & Forré, P. (2019). Reparameterizing Distributions on Lie Groups. Proceedings of Machine Learning Research, 89, 3244-3253. https://arxiv.org/abs/1903.02958[details]
Forré, P., & Mooij, J. M. (2019). Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias. In A. Globerson, & R. Silva (Eds.), Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence: UAI 2019, Tel Aviv, Israel, July 22-25, 2019 [15] AUAI Press. http://auai.org/uai2019/proceedings/papers/15.pdf[details]
Patrini, G., van den Berg, R., Forré, P., Carioni, M., Bhargav, S., Welling, M., Genewein, T., & Nielsen, F. (2019). Sinkhorn AutoEncoders. In A. Globerson, & R. Silva (Eds.), Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence: UAI 2019, Tel Aviv, Israel, July 22-25, 2019 [253] AUAI Press. https://arxiv.org/abs/1810.01118[details]
Forré, P., & Mooij, J. M. (2018). Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders. In A. Globerson, & R. Silva (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Thirty-Fourth Concerence (2018) : August 6-10, 2018, Monterey, California, USA (pp. 269-278). AUAI Press. http://auai.org/uai2018/proceedings/papers/117.pdf[details]
Boelrijk, J. H. M., Ensing, B., & Forré, P. D. (2022). Multi-objective optimization via equivariant deep hypervolume approximation. https://arxiv.org/abs/2210.02177
Federici, M., Forre, P., & Tomioka, R. (2022). An Information-theoretic Approach to Distribution Shifts. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. Wortman Vaughan (Eds.), 35th Conference on Neural Information Processing Systems (NeurIPS 2021) : online, 6-14 December 2021 (Vol. 21, pp. 17628-17641). (Advances in Neural Information Processing Systems; Vol. 34). Neural Information Processing Systems Foundation. https://doi.org/10.48550/arXiv.2106.03783[details]
Lang, L., Baudot, P., Quax, R., & Forré, P. D. (2022). Information Decomposition Diagrams Applied beyond Shannon Entropy: A Generalization of Hu's Theorem. https://arxiv.org/abs/2202.09393
Maile, K. M. L., Wilson, D., & Forré, P. D. (2022). Architectural Optimization over Subgroups for Equivariant Neural Networks. https://doi.org/10.48550/arXiv.2210.05484
Pandeva, T. P., & Forré, P. D. (2022). Multi-View Independent Component Analysis with Shared and Individual Sources. https://arxiv.org/abs/2210.02083
Pandeva, T. P., Bakker, T. B., Andersson Naesseth, C. A., & Forré, P. D. (2022). E-Valuating Classifier Two-Sample Tests. https://arxiv.org/abs/2210.13027
Keller, T. A., Peters, J. W. T., Jaini, P., Hoogeboom, E., Forré, P., & Welling, M. (2021). Self Normalizing Flows. Proceedings of Machine Learning Research, 139, 5378-5387. https://arxiv.org/abs/2011.07248[details]
Lippert, F., Kranstauber, B., van Loon, E. E., & Forré, P. (2022). Physics-informed inference of aerial animal movements from weather radar data. Paper presented at Workshop AI for Science: Progress and Promises, New Orleans, Louisiana, United States. https://doi.org/10.48550/arXiv.2211.04539[details]
Maile, K., Wilson, D. G., & Forré, P. (2022). Towards architectural optimization of equivariant neural networks over subgroups. Paper presented at NeurIPS 2022 Workshop: NeurReps, New Orleans, Louisiana, United States. https://openreview.net/forum?id=KJFpArxWe-g[details]
Ruhe, D. J. J., & Forré, P. D. (2022). Self-Supervised Inference in State-Space Models. Paper presented at The Tenth International Conference on Learning Representations. https://openreview.net/forum?id=VPjw9KPWRSK
2021
Gallego-Posada, J., & Forré, P. D. (2021). Simplicial Regularization. Paper presented at ICLR 2021 Workshop: Geometrical and Topological Representation Learning. https://openreview.net/forum?id=x9xn6HKgefz
2020
Falorsi, L., & Forré, P. D. (2020). Neural Ordinary Differential Equations on Manifolds. Paper presented at ICML 2020 workshop INNF+: Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models, . https://arxiv.org/abs/2006.06663
Federici, M., Dutta, A., Forré, P., Kushman, N., & Akata, Z. (2020). Learning Robust Representations via Multi-View Information Bottleneck. Paper presented at 8th International Conference on Learning Representations, Addis Abeba, Ethiopia.
2018
Falorsi, L., de Haan, P., Davidson, T. R., De Cao, N., Weiler, M., Forré, P., & Cohen, T. S. (2018). Explorations in Homeomorphic Variational Auto-Encoding. Paper presented at ICML18 Workshop on Theoretical Foundations and Applications of Deep Generative Models, Stockholm, Sweden. [details]
Forré, P., & Mooij, J. M. (2017). Markov Properties for Graphical Models with Cycles and Latent Variables. Amsterdam: Informatics Institute, University of Amsterdam. [details]
Lippert, F., Kranstauber, B., Forré, P. & van Loon, E. . (2022). Data from: Learning to predict spatio-temporal movement dynamics from static sensor networks. Zenodo. https://doi.org/10.5281/zenodo.6364941
Lippert, F., Kranstauber, B., Forré, P. & van Loon, E. . (2022). Data from: Learning to predict spatio-temporal movement dynamics from weather radar networks. Zenodo. https://doi.org/10.5281/zenodo.6874789
2021
Miller, B., Cole, A., Forré, P., Louppe, G. & Weniger, C. (2021). Truncated Marginal Neural Ratio Estimation - Data. Zenodo. https://doi.org/10.5281/zenodo.5592427
The UvA uses cookies to ensure the basic functionality of the site and for statistical and optimisation purposes. Cookies are also placed to display third-party content and for marketing purposes. Click 'Accept all cookies' to consent to the placement of all cookies, or choose 'Decline' to only accept functional and analytical cookies. Also read the UvA Privacy statement.