For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Helminck, G. F., & Panasenko, E. A. (2020). Reductions of the strict KP hierarchy. Theoretical and Mathematical Physics(Russian Federation), 205(2), 1411-1425. https://doi.org/10.1134/S0040577920110021[details]
Helminck, G. F., & Weenink, J. A. (2020). Integrable hierarchies in the N×N-matrices related to powers of the shift operator. Journal of Geometry and Physics, 148, [103560]. https://doi.org/10.1016/j.geomphys.2019.103560[details]
Helminck, G. F., Poberezhny, V. A., & Polenkova, S. V. (2020). Extensions of the discrete KP hierarchy and its strict version. Theoretical and Mathematical Physics(Russian Federation), 204(3), 1140-1153. https://doi.org/10.1134/S0040577920090044[details]
2019
Helminck, G. F. (2019). A Geometric Construction of Solutions of the Strict h-Hierarchy. Theoretical and Mathematical Physics(Russian Federation), 200(1), 985-1005. https://doi.org/10.1134/S0040577919070043[details]
Helminck, G. F., & Panasenko, E. A. (2019). Expressions in Fredholm Determinants for Solutions of the Strict KP Hierarchy. Theoretical and Mathematical Physics(Russian Federation), 199(2), 637-651. https://doi.org/10.1134/S0040577919050027[details]
Helminck, G. F., & Panasenko, E. A. (2019). Geometric Solutions of the Strict KP Hierarchy. Theoretical and Mathematical Physics(Russian Federation), 198(1), 48-68. https://doi.org/10.1134/S0040577919010045[details]
Helminck, G. F., & Twilt, F. (2019). Newton flows for elliptic functions III & IV: Pseudo Newton graphs: bifurcation and creation of flows. European Journal of Mathematics, 5(4), 1364-1395. https://doi.org/10.1007/s40879-018-0289-y[details]
Helminck, G. F., Poberezhny, V. A., & Polenkova, S. V. (2019). Strict Versions of Integrable Hierarchies in Pseudodifference Operators and the Related Cauchy Problems. Theoretical and Mathematical Physics(Russian Federation), 198(2), 197-214. https://doi.org/10.1134/S004057791902003X[details]
2018
Helminck, G. F., & Twilt, F. (2018). Newton flows for elliptic functions I Structural stability: characterization & genericity. Complex Variables and Elliptic Equations, 63(6), 815-835. https://doi.org/10.1080/17476933.2017.1350853[details]
Helminck, G. F., Poberezhny, V. A., & Polenkova, S. V. (2018). A geometric construction of solutions of the strict dKP(Λ0) hierarchy. Journal of Geometry and Physics, 131, 189-203. https://doi.org/10.1016/j.geomphys.2018.05.015[details]
2017
Helminck, G. F. (2017). An integrable hierarchy including the AKNS hierarchy and its strict version. Theoretical and Mathematical Physics(Russian Federation), 192(3), 1324-1336. https://doi.org/10.1134/S0040577917090045[details]
Helminck, G. F. (2017). Strict versions of various matrix hierarchies related to sln-loops and their combinations. Quarterly Physics Review, 3(2), [1408]. [details]
Helminck, G. F., & Twilt, F. (2017). Newton flows for elliptic functions II: Structural stability: classification and representation. European Journal of Mathematics, 3(3), 691-727. https://doi.org/10.1007/s40879-017-0146-4[details]
Helminck, G. F., Panasenko, E. A., & Polenkova, S. V. (2015). Bilinear equations for the strict KP hierarchy. Theoretical and Mathematical Physics, 185(3), 1803-1815. https://doi.org/10.1007/s11232-015-0380-1[details]
2014
Helminck, G. F., & Helminck, A. G. (2014). Infinite dimensional symmetric spaces and Lax equations compatible with the infinite Toda chain. Journal of Geometry and Physics, 85, 60-74. https://doi.org/10.1016/j.geomphys.2014.05.023[details]
Helminck, G. F., Helminck, A. G., & Panasenko, E. A. (2014). Cauchy problems related to integrable deformations of pseudo differential operators. Journal of Geometry and Physics, 85, 196-205. https://doi.org/10.1016/j.geomphys.2014.05.004[details]
2013
Helminck, G. F., Helminck, A. G., & Panasenko, E. A. (2013). Integrable deformations in the algebra of pseudodifferential operators from a Lie algebraic perspective. Theoretical and Mathematical Physics, 174(1), 134-153. https://doi.org/10.1007/s11232-013-0011-7[details]
2012
Helminck, G. F., & Opimakh, A. V. (2012). The zero curvature form of integrable hierarchies in the Z x Z-matrices. Algebra Colloquium, 19(2), 237-262. https://doi.org/10.1142/S1005386712000168[details]
Helminck, G. F., Panasenko, E. A., & Sergeeva, A. O. (2012). A formal infinite dimensional Cauchy problem and its relation to integrable hierarchies. In M. L. Ge, C. Bai, & N. Jing (Eds.), Quantized Algebra and Physics: Proceedings of the International Workshop on Quantizided Algebra and Physics, Tianjin, China, 23 - 26 July 2009 (pp. 89-108). Singapore: World Scientific. https://doi.org/10.1142/9789814340458_0005[details]
Helminck, G. F., Helminck, A. G., & Opimakh, A. V. (2011). Reprint of: equivalent forms of multi component Toda hierarchies. Journal of Geometry and Physics, 61(9), 1755-1781. https://doi.org/10.1016/j.geomphys.2011.06.012[details]
2010
Helminck, G. F., & Panasenko, E. A. (2010). An algebraic characterization of the bilinear relations of the matrix hierarchy associated with a commutative algebra of k×k-matrices. Acta Applicandae Mathematicae, 109(1), 45-59. https://doi.org/10.1007/s10440-009-9440-6[details]
Helminck, G. F., & Poberezhny, V. A. (2010). Moving poles of meromorphic linear systems on ℙ1(ℂ) in the complex plane. Theoretical and Mathematical Physics, 165(3), 1637-1649. https://doi.org/10.1007/s11232-010-0134-z[details]
Helminck, G. F., & Poberezhny, V. A. (2010). Подвижные полюсы мероморфных линейных систем на P1(C) в комплексной плоскости. Теоретическая и математическая физика, 165(3), 472-487. https://doi.org/10.4213/tmf6588[details]
Helminck, G. F., Helminck, A. G., & Opimakh, A. V. (2010). The relative frame bundle of an infinite-dimensional flag variety and solutions of integrable hierarchies. Theoretical and Mathematical Physics, 165(3), 1610-1636. https://doi.org/10.1007/s11232-010-0133-0[details]
Helminck, G. F., Helminck, A. G., & Opimakh, A. V. (2010). Относительное расслоение реперов бесконечномерного многообразия флагов и решения интегрируемых иерархий. Теоретическая и математическая физика, 165(3), 440-471. [details]
2008
Helminck, G. F., & Opimakh, A. V. (2008). Composition series for representations of the generalized Lorentz group associated with a cone. Bulgarian Journal of Physics, 35, 335-351. [details]
Helminck, G. F., & Polenkova, S. V. (2008). An analytic framework for the two-dimensional infinite Toda hierarchy associated with a commutative algebra. Theoretical and Mathematical Physics, 155(1), 659-672. https://doi.org/10.1007/s11232-008-0055-2[details]
Twilt, F., Helminck, G. F., Snuverink, M., & van den Brug, L. (2008). Newton flows for elliptic functions: A pilot study. Optimization, 57(1), 113-134. https://doi.org/10.1080/02331930701778965[details]
The UvA website uses cookies and similar technologies to ensure the basic functionality of the site and for statistical and optimisation purposes. It also uses cookies to display content such as YouTube videos and for marketing purposes. This last category consists of tracking cookies: these make it possible for your online behaviour to be tracked. You consent to this by clicking on Accept. Also read our Privacy statement
Necessary
Cookies that are essential for the basic functioning of the website. These cookies are used to enable students and staff to log in to the site, for example.
Necessary & Optimalisation
Cookies that collect information about visitor behaviour anonymously to help make the website work more effectively.
Necessary & Optimalisation & Marketing
Cookies that make it possible to track visitors and show them personalised adverts. These are used by third-party advertisers to gather data about online behaviour. To watch Youtube videos you need to enable this category.