For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
I am Benjamin Martin an Assistant Professor at the Department of Theoretical and Computational Ecology at the University of Amsterdam. This is my University research page. Here you can find information on my previous and current research.
Apgar, T. M., Merz, J. E., Martin, B. T., & Palkovacs, E. P. (2021). Alternative migratory strategies are widespread in subyearling Chinook salmon. Ecology of Freshwater Fish, 30(1), 125-139. https://doi.org/10.1111/eff.12570
FitzGerald, A. M., John, S. N., Apgar, T. M., Mantua, N. J., & Martin, B. T. (2021). Quantifying thermal exposure for migratory riverine species: Phenology of Chinook salmon populations predicts thermal stress. Global Change Biology, 27(3), 536-549. https://doi.org/10.1111/gcb.15450[details]
Hein, A. M., Altshuler, D. L., Cade, D. E., Liao, J. C., Martin, B. T., & Taylor, G. K. (2020). An Algorithmic Approach to Natural Behavior. Current Biology, 30(11), R663-R675. https://doi.org/10.1016/j.cub.2020.04.018[details]
Martin, B. T., Dudley, P. N., Kashef, N. S., Stafford, D. M., Reeder, W. J., Tonina, D., Del Rio, A. M., Scott Foott, J., & Danner, E. M. (2020). The biophysical basis of thermal tolerance in fish eggs. Proceedings of the Royal Society B: Biological Sciences, 287(1937), [20201550]. https://doi.org/10.1098/rspb.2020.1550[details]
Martin, B. T., Dudley, P. N., Stafford, D. M., Reeder, W. J., Tonina, D., Danner, E. M., Kashef, N. S., Del Rio, A. M. & Scott Foott, F. J. (2020). Supplementary material from "The biophysical basis of thermal tolerance in fish eggs". The Royal Society. https://doi.org/10.6084/m9.figshare.c.5170545.v1
2019
Friedman, W. R., Martin, B. T., Wells, B. K., Warzybok, P., Michel, C. J., Danner, E. M., & Lindley, S. T. (2019). Modeling composite effects of marine and freshwater processes on migratory species. Ecosphere, 10(7), [e02743]. https://doi.org/10.1002/ecs2.2743
Hamda, N. T., Martin, B., Poletto, J. B., Cocherell, D. E., Fangue, N. A., Van Eenennaam, J., Mora, E. A., & Danner, E. (2019). Applying a simplified energy-budget model to explore the effects of temperature and food availability on the life history of green sturgeon (Acipenser medirostris). Ecological Modelling, 395, 1-10. https://doi.org/10.1016/j.ecolmodel.2019.01.005
2018
Martin, B. T., Munch, S. B., & Hein, A. M. (2018). Reverse-engineering ecological then from data. Proceedings of the Royal Society B-Biological Sciences, 285(1878). https://doi.org/10.1098/rspb.2018.0422
Poletto, J. B., Martin, B., Danner, E., Baird, S. E., Cocherell, D. E., Hamda, N., Cech, J. J., & Fangue, N. A. (2018). Assessment of multiple stressors on the growth of larval green sturgeon Acipenser medirostris: implications for recruitment of early life-history stages. Journal of Fish Biology, 93(5), 952-960. https://doi.org/10.1111/jfb.13805
2017
Martin, B. T., Heintz, R., Danner, E. M., & Nisbet, R. M. (2017). Integrating lipid storage into general representations of fish energetics. Journal of Animal Ecology, 86(4), 812-825. https://doi.org/10.1111/1365-2656.12667
Martin, B. T., Pike, A., John, S. N., Hamda, N., Roberts, J., Lindley, S. T., & Danner, E. M. (2017). Phenomenological vs. biophysical models of thermal stress in aquatic eggs. Ecology Letters, 20(1), 50-59. https://doi.org/10.1111/ele.12705
2016
Martin, B. T., Czesny, S., Wahl, D. H., & Grimm, V. (2016). Scale-dependent role of demography and dispersal on the distribution of populations in heterogeneous landscapes. Oikos, 125(5), 667-673. https://doi.org/10.1111/oik.02345
Nisbet, R. M., Martin, B. T., & de Roos, A. M. (2016). Integrating ecological insight derived from individual-based simulations and physiologically structured population models. Ecological Modelling, 326, 101-112. https://doi.org/10.1016/j.ecolmodel.2015.08.013[details]
Fiechter, J., Huff, D. D., Martin, B. T., Jackson, D. W., Edwards, C. A., Rose, K. A., ... Wells, B. K. (2015). Environmental conditions impacting juvenile Chinook salmon growth off central California: An ecosystem model analysis. Geophysical Research Letters, 42(8), 2910-2917. https://doi.org/10.1002/2015GL063046
Martin, B. T., Nisbet, R. M., Pike, A., Michel, C. J., & Danner, E. M. (2015). Sport science for salmon and other species: ecological consequences of metabolic power constraints. Ecology Letters, 18(6), 535-544. https://doi.org/10.1111/ele.12433
2014
Grimm, V., Augusiak, J., Focks, A., Frank, B. M., Gabsi, F., Johnston, A. S. A., Liu, C., Martin, B. T., Meli, M., Radchuk, V., Thorbek, P., & Railsback, S. F. (2014). Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE. Ecological Modelling, 280, 129-139. https://doi.org/10.1016/j.ecolmodel.2014.01.018
Jager, T., Barsi, A., Hamda, N. T., Martin, B. T., Zimmer, E. I., & Ducrot, V. (2014). Dynamic energy budgets in population ecotoxicology: Applications and outlook. Ecological Modelling, 280, 140-147. https://doi.org/10.1016/j.ecolmodel.2013.06.024
Martin, B., Jager, T., Nisbet, R. M., Preuss, T. G., & Grimm, V. (2014). Limitations of extrapolating toxic effects on reproduction to the population level. Ecological Applications, 24(8), 1972-1983. https://doi.org/10.1890/14-0656.1
2013
Grimm, V., & Martin, B. T. (2013). Mechanistic effect modeling for ecological risk assessment: where to go from here? Integrated Environmental Assessment and Management, 9(3), e58-e63. https://doi.org/10.1002/ieam.1423
Jager, T., Martin, B. T., & Zimmer, E. I. (2013). DEBkiss or the quest for the simplest generic model of animal life history. Journal of Theoretical Biology, 328, 9-18. https://doi.org/10.1016/j.jtbi.2013.03.011
Martin, B. T., Jager, T., Nisbet, R. M., Preuss, T. G., & Grimm, V. (2013). Predicting Population Dynamics from the Properties of Individuals: A Cross-Level Test of Dynamic Energy Budget Theory. American Naturalist, 181(4), 506-519. https://doi.org/10.1086/669904
Martin, B. T., Jager, T., Nisbet, R. M., Preuss, T. G., Hammers-Wirtz, M., & Grimm, V. (2013). Extrapolating ecotoxicological effects from individuals to populations: a generic approach based on Dynamic Energy Budget theory and individual-based modeling. Ecotoxicology, 22(3), 574-583. https://doi.org/10.1007/s10646-013-1049-x
Sibly, R. M., Grimm, V., Martin, B. T., Johnston, A. S. A., Kulakowska, K., Topping, C. J., ... DeAngelis, D. L. (2013). Representing the acquisition and use of energy by individuals in agent-based models of animal populations. Methods in Ecology and Evolution, 4(2), 151-161. https://doi.org/10.1111/2041-210x.12002
2012
Martin, B. T., Zimmer, E. I., Grimm, V., & Jager, T. (2012). Dynamic Energy Budget theory meets individual-based modelling: a generic and accessible implementation. Methods in Ecology and Evolution, 3(2), 445-449. https://doi.org/10.1111/j.2041-210X.2011.00168.x
2022
FitzGerald, A. & Martin, B. (2022). Quantification of thermal impacts across freshwater life stages to improve temperature management for anadromous salmonids. DRYAD. https://doi.org/10.5061/dryad.cjsxksn7b
2021
FitzGerald, A., Boughton, D., Fuller, J., John, S., Martin, B., Harrison, L. & Mantua, N. (2021). Physical and biological constraints on the capacity for life-history expression of anadromous salmonids: an Eel River, California, case study. DRYAD. https://doi.org/10.5061/dryad.ksn02v74x
2020
FitzGerald, A., John, S., Apgar, T., Mantua, N. & Martin, B. (2020). Quantifying thermal exposure for migratory riverine species: phenology of Chinook salmon populations predicts thermal stress. DRYAD. https://doi.org/10.5061/dryad.n5tb2rbtq
Martin, B. T., Dudley, P. N., Stafford, D. M., Reeder, W. J., Tonina, D., Danner, E. M., Kashef, N. S., Del Rio, A. M. & Scott Foott, F. J. (2020). Supplementary material from "The biophysical basis of thermal tolerance in fish eggs". The Royal Society. https://doi.org/10.6084/m9.figshare.c.5170545.v1
The UvA website uses cookies and similar technologies to ensure the basic functionality of the site and for statistical and optimisation purposes. It also uses cookies to display content such as YouTube videos and for marketing purposes. This last category consists of tracking cookies: these make it possible for your online behaviour to be tracked. You consent to this by clicking on Accept. Also read our Privacy statement
Necessary
Cookies that are essential for the basic functioning of the website. These cookies are used to enable students and staff to log in to the site, for example.
Necessary & Optimalisation
Cookies that collect information about visitor behaviour anonymously to help make the website work more effectively.
Necessary & Optimalisation & Marketing
Cookies that make it possible to track visitors and show them personalised adverts. These are used by third-party advertisers to gather data about online behaviour. To watch Youtube videos you need to enable this category.