For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Abbott, R., LIGO Scientific Collaboration and Virgo Collaboration, Linde, F. L., Nissanke, S. M., Hinderer, T. P., Nichols, D. A., Phukon, K. S., Raaijmakers, G., & Vardaro, M. (2021). All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 104(8), [082004]. https://doi.org/10.1103/PhysRevD.104.082004
Abbott, R., LIGO Scientific Collaboration and Virgo Collaboration, Linde, F. L., Nissanke, S. M., Hinderer, T. P., Nichols, D. A., Phukon, K. S., Raaijmakers, G., & Vardaro, M. (2021). Constraints on Cosmic Strings Using Data from the Third Advanced LIGO-Virgo Observing Run. Physical Review Letters, 126(24), [241102]. https://doi.org/10.1103/PhysRevLett.126.241102
Feeney, S. M., Peiris, H. V., Nissanke, S. M., & Mortlock, D. J. (2021). Prospects for Measuring the Hubble Constant with Neutron-Star-Black-Hole Mergers. Physical Review Letters, 126(17), [171102]. https://doi.org/10.1103/PhysRevLett.126.171102[details]
LIGO Scientific Collaboration and Virgo Collaboration, Abbott, R., Linde, F. L., Nissanke, S. M., Hinderer, T. P., Nichols, D. A., Phukon, K. S., Raaijmakers, G., & Vardaro, M. (2021). A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 909(2), [218]. https://doi.org/10.3847/1538-4357/abdcb7
LIGO Scientific Collaboration and Virgo Collaboration, Abbott, R., Linde, F. L., Nissanke, S. M., Hinderer, T. P., Nichols, D. A., Phukon, K. S., Raaijmakers, G., & Vardaro, M. (2021). All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 104, [102001]. https://doi.org/10.1103/PhysRevD.104.102001
LIGO Scientific Collaboration and Virgo Collaboration, Abbott, R., Linde, F. L., Nissanke, S. M., Hinderer, T. P., Nichols, D. A., Phukon, K. S., Raaijmakers, G., & Vardaro, M. (2021). All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 104, [122004]. https://doi.org/10.1103/PhysRevD.104.122004
LIGO Scientific Collaboration and Virgo Collaboration, Abbott, R., Linde, F. L., Nissanke, S. M., Hinderer, T. P., Nichols, D. A., Phukon, K. S., Raaijmakers, G., & Vardaro, M. (2021). All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 103, [064017]. https://doi.org/10.1103/PhysRevD.103.064017
LIGO Scientific Collaboration and Virgo Collaboration, Abbott, R., Linde, F. L., Nissanke, S. M., Hinderer, T. P., Nichols, D. A., Phukon, K. S., Raaijmakers, G., & Vardaro, M. (2021). Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching Pulsar PSR J0537-6910. Astrophysical Journal, 922(1), [71]. https://doi.org/10.3847/1538-4357/ac0d52
LIGO Scientific Collaboration and Virgo Collaboration, Abbott, R., Linde, F. L., Nissanke, S. M., Hinderer, T. P., Nichols, D. A., Phukon, K. S., Raaijmakers, G., & Vardaro, M. (2021). Diving below the spin-down limit: Constraints on gravitational waves from the energetic young pulsar PSR J0537-6910. Astrophysical Journal, 913(2), [L27]. https://doi.org/10.3847/2041-8213/abffcd
LIGO Scientific Collaboration and Virgo Collaboration, Abbott, R., Linde, F. L., Nissanke, S. M., Hinderer, T. P., Nichols, D. A., Phukon, K. S., Raaijmakers, G., & Vardaro, M. (2021). GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run. Physical Review X, 11, [021053]. https://doi.org/10.1103/PhysRevX.11.021053
LIGO Scientific Collaboration and Virgo Collaboration, Abbott, R., Linde, F. L., Nissanke, S. M., Hinderer, T. P., Nichols, D. A., Phukon, K. S., Raaijmakers, G., & Vardaro, M. (2021). Observation of Gravitational Waves from Two Neutron Star-Black Hole Coalescences. Astrophysical Journal, 915(1), [L5]. https://doi.org/10.3847/2041-8213/ac082e
LIGO Scientific Collaboration and Virgo Collaboration, Abbott, R., Linde, F. L., Nissanke, S. M., Hinderer, T. P., Nichols, D. A., Phukon, K. S., Raaijmakers, G., & Vardaro, M. (2021). Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo. SoftwareX, 13, [100658]. https://doi.org/10.1016/j.softx.2021.100658
LIGO Scientific Collaboration and Virgo Collaboration, Abbott, R., Linde, F. L., Nissanke, S. M., Hinderer, T. P., Nichols, D. A., Phukon, K. S., Raaijmakers, G., & Vardaro, M. (2021). Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal, 913(1), [L7]. https://doi.org/10.3847/2041-8213/abe949
LIGO Scientific Collaboration and Virgo Collaboration, Abbott, R., Linde, F. L., Nissanke, S. M., Hinderer, T. P., Nichols, D. A., Phukon, K. S., Raaijmakers, G., & Vardaro, M. (2021). Search for Gravitational Waves Associated with Γ-Ray Bursts Detected by Fermi and Swift During the LIGO-Virgo Run O3a. Astrophysical Journal, 915(2), [86]. https://doi.org/10.3847/1538-4357/abee15
LIGO Scientific Collaboration and Virgo Collaboration, Abbott, R., Linde, F. L., Nissanke, S. M., Hinderer, T. P., Nichols, D. A., Phukon, K. S., Raaijmakers, G., & Vardaro, M. (2021). Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO-Virgo's Third Observing Run. Astrophysical Journal, 923(1), [14]. https://doi.org/10.3847/1538-4357/ac23db
LIGO Scientific Collaboration and Virgo Collaboration, Abbott, R., Linde, F. L., Nissanke, S. M., Hinderer, T. P., Nichols, D. A., Phukon, K. S., Raaijmakers, G., & Vardaro, M. (2021). Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 104, [022005]. https://doi.org/10.1103/PhysRevD.104.082005
LIGO Scientific Collaboration and Virgo Collaboration, Abbott, R., Linde, F. L., Nissanke, S. M., Hinderer, T. P., Nichols, D. A., Phukon, K. S., Raaijmakers, G., & Vardaro, M. (2021). Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 921(1), [80]. https://doi.org/10.3847/1538-4357/ac17ea
LIGO Scientific Collaboration and Virgo Collaboration, Abbott, R., Linde, F. L., Nissanke, S. M., Hinderer, T. P., Nichols, D. A., Phukon, K. S., Raaijmakers, G., & Vardaro, M. (2021). Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 103, [122002]. https://doi.org/10.1103/PhysRevD.103.122002
LIGO Scientific Collaboration and Virgo Collaboration, Abbott, R., Linde, F. L., Nissanke, S. M., Hinderer, T. P., Nichols, D. A., Phukon, K. S., Raaijmakers, G., & Vardaro, M. (2021). Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 104, [022004]. https://doi.org/10.1103/PhysRevD.104.022004
Raaijmakers, G., Greif, S. K., Hebeler, K., Hinderer, T., Nissanke, S., Schwenk, A., Riley, T. E., Watts, A. L., Lattimer, J. M., & Ho, W. C. G. (2021). Constraints on the Dense Matter Equation of State and Neutron Star Properties from NICER's Mass-Radius Estimate of PSR J0740+6620 and Multimessenger Observations. Astrophysical Journal Letters, 918(2), [L29]. https://doi.org/10.3847/2041-8213/ac089a[details]
Raaijmakers, G., Nissanke, S., Foucart, F., Kasliwal, M. M., Bulla, M., Fernández, R., Henkel, A., Hinderer, T., Hotokezaka, K., Lukošiutė, K., Venumadhav, T., Antier, S., Coughlin, M. W., Dietrich, T., & Edwards, T. D. P. (2021). The Challenges Ahead for Multimessenger Analyses of Gravitational Waves and Kilonova: A Case Study on GW190425. Astrophysical Journal, 922(2), [269]. https://doi.org/10.3847/1538-4357/ac222d[details]
Shiralilou, B., Hinderer, T., Nissanke, S. M., Ortiz, N., & Witek, H. (2021). Nonlinear curvature effects in gravitational waves from inspiralling black hole binaries. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 103(12), [L121503]. https://doi.org/10.1103/PhysRevD.103.L121503[details]
Virgo Collaboration, Linde, F. L., & Nissanke, S. M. (2021). High-bandwidth beam balance for vacuum-weight experiment and Newtonian noise subtraction. The European Physical Journal Plus, 136, [335]. https://doi.org/10.1140/epjp/s13360-021-01214-4
2020
Abbott, B. P., Bulten, H. J., Caudill, S., Ghosh, A., Hinderer, T., Linde, F., Nelemans, G., Nichols, D., Nissanke, S., Phukon, K. S., Raaijmakers, G., van Bakel, N., van Beuzekom, M., van den Brand, J. F. J., Van Den Broeck, C., Vardaro, M., Williamson, A. R., & LIGO Scientific Collaboration & Virgo Collaboration (2020). GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼3.4 M⊙. Astrophysical Journal Letters, 892(1), [L3]. https://doi.org/10.3847/2041-8213/ab75f5[details]
Abbott, B. P., Caudill, S., Ghosh, A., Hinderer, T., Linde, F., Nichols, D., Nissanke, S., Phukon, K. S., van Bakel, N., van Beuzekom, M., Vardaro, M., Williamson, A. R., The LIGO Scientific Collaboration, & Virgo Collaboration (2020). A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 37(5), [055002]. https://doi.org/10.1088/1361-6382/ab685e[details]
Abbott, B. P., KAGRA Collaboration, LIGO Scientific Collaboration, & Virgo Collaboration (2020). Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 23, [3]. https://doi.org/10.1007/s41114-020-00026-9[details]
Abbott, R., & LIGO Scientific Collaboration and Virgo Collaboration (2020). GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 102(4), [043015]. https://doi.org/10.1103/PhysRevD.102.043015[details]
Abbott, R., & LIGO Scientific Collaboration and Virgo Collaboration (2020). GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙. Physical Review Letters, 125(10), [101102]. https://doi.org/10.1103/PhysRevLett.125.101102[details]
Abbott, R., Bulten, H. J., Caudill, S., Ghosh, A., Hinderer, T., Linde, F., Nelemans, G., Nichols, D., Nissanke, S., Phukon, K. S., Raaijmakers, G., van Bakel, N., van Beuzekom, M., van den Brand, J. F. J., Van Den Broeck, C. F. F., Vardaro, M., & LIGO Scientific Collaboration & Virgo Collaboration (2020). GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 896(2), [L44]. https://doi.org/10.3847/2041-8213/ab960f[details]
Abbott, R., Bulten, H. J., Caudill, S., Ghosh, A., Hinderer, T., Linde, F., Nelemans, G., Nichols, D., Nissanke, S., Phukon, K. S., Raaijmakers, G., van Bakel, N., van Beuzekom, M., van den Brand, J. F. J., Van Den Broeck, C., Vardaro, M., & LIGO Scientific Collaboration and Virgo Collaboration (2020). Properties and Astrophysical Implications of the 150 M⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 900(1), [L13]. https://doi.org/10.3847/2041-8213/aba493[details]
Broderick, J. W., Shimwell, T. W., Gourdji, K., Rowlinson, A., Nissanke, S., Hotokezaka, K., Jonker, P. G., Tasse, C., Hardcastle, M. J., Oonk, J. B. R., Fender, R. P., Wijers, R. A. M. J., Shulevski, A., Stewart, A. J., ter Veen, S., Moss, V. A., van der Wiel, M. H. D., Nichols, D. A., Piette, A., ... Zucca, P. (2020). LOFAR 144-MHz follow-up observations of GW170817. Monthly Notices of the Royal Astronomical Society, 494(4), 5110-5117. https://doi.org/10.1093/mnras/staa950[details]
Coughlin, M. W., Dietrich, T., Antier, S., Almualla, M., Anand, S., Bulla, M., Foucart, F., Guessoum, N., Hotokezaka, K., Kumar, V., Raaijmakers, G., & Nissanke, S. (2020). Implications of the search for optical counterparts during the second part of the Advanced LIGO's and Advanced Virgo's third observing run: lessons learned for future follow-up observations. Monthly Notices of the Royal Astronomical Society, 497(1), 1181-1196. https://doi.org/10.1093/mnras/staa1925[details]
Coughlin, M. W., Dietrich, T., Antier, S., Bulla, M., Foucart, F., Hotokezaka, K., Raaijmakers, G., Hinderer, T., & Nissanke, S. (2020). Implications of the search for optical counterparts during the first six months of the Advanced LIGO's and Advanced Virgo's third observing run: possible limits on the ejecta mass and binary properties. Monthly Notices of the Royal Astronomical Society, 492(1), 863-876. https://doi.org/10.1093/mnras/stz3457[details]
Dobie, D., Kaplan, D. L., Hotokezaka, K., Murphy, T., Deller, A., Hallinan, G., & Nissanke, S. (2020). Constraining properties of neutron star merger outflows with radio observations. Monthly Notices of the Royal Astronomical Society, 494(2), 2449-2464. https://doi.org/10.1093/mnras/staa789[details]
Edwards, T. D. P., Chianese, M., Kavanagh, B. J., Nissanke, S. M., & Weniger, C. (2020). Unique Multimessenger Signal of QCD Axion Dark Matter. Physical Review Letters, 124(16), [161101]. https://doi.org/10.1103/PhysRevLett.124.161101[details]
Hamburg, R., Fermi Gamma-Ray Burst Monitor, Bulten, H. J., Caudill, S., Ghosh, A., Hinderer, T., Linde, F., Nelemans, G., Nichols, D., Nissanke, S., Phukon, K. S., Raaijmakers, G., van Bakel, N., van Beuzekom, M., van den Brand, J. F. J., Van Den Broeck, C., Vardaro, M., & The LIGO Scientific Collaboration and the Virgo Collaboration (2020). A joint Fermi-GBM and LIGO/Virgo analysis of compact binary mergers from the first and second gravitational-wave observing runs. Astrophysical Journal, 893(2), [100]. https://doi.org/10.3847/1538-4357/ab7d3e[details]
Raaijmakers, G., Greif, S. K., Riley, T. E., Hinderer, T., Hebeler, K., Schwenk, A., Watts, A. L., Nissanke, S., Guillot, S., Lattimer, J. M., & Ludlam, R. M. (2020). Constraining the Dense Matter Equation of State with Joint Analysis of NICER and LIGO/Virgo Measurements. Astrophysical Journal, 893(1), [L21]. https://doi.org/10.3847/2041-8213/ab822f[details]
Schwenk, A., Greif, S. K., Ludlam, R. M., Raaijmakers, G., Riley, T. E., Lattimer, J. M., Hebeler, K., Hinderer, T., Guillot, S., Watts, A. L. & Nissanke, S. (16-3-2020). Constraining the dense matter equation of state with joint analysis of NICERand LIGO/Virgo measurements: Data for generating plots. Zenodo. https://doi.org/10.5281/zenodo.3711718
al., E., Ghosh, A., Hinderer, T. P., Linde, F. L., Nichols, D. A., Nissanke, S. M., Phukon, K. S., Vardaro, M., & Raaijmakers, G. (2020). Model comparison from LIGO-Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 37(4), [045006]. https://doi.org/10.1088/1361-6382/ab5f7c
al., E., Ghosh, A., Hinderer, T. P., Linde, F. L., Nichols, D. A., Nissanke, S. M., Phukon, K. S., Vardaro, M., & Raaijmakers, G. (2020). Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 101(8), [084002]. https://doi.org/10.1103/PhysRevD.101.084002
al., E., Ghosh, A., Hinderer, T. P., Linde, F. L., Nichols, D. A., Nissanke, S. M., Phukon, K. S., Vardaro, M., & Raaijmakers, G. (2020). Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. Physical Review Letters, 125(13), [131101]. https://doi.org/10.1103/PhysRevLett.125.131101
al., E., Ghosh, A., Hinderer, T. P., Linde, F. L., Nichols, D. A., Nissanke, S. M., Phukon, K. S., Vardaro, M., & Raaijmakers, G. (2020). The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 116, [102386]. https://doi.org/10.1016/j.astropartphys.2019.07.005
2019
Abbott, B. P., Nichols, D., Nissanke, S., & al., E. (2019). All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D. Particles and Fields, 100(2). https://doi.org/10.1103/PhysRevD.100.024004
Abbott, B. P., Nichols, D., Nissanke, S., & al., E. (2019). All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. Physical Review D. Particles and Fields, 99. https://doi.org/10.1103/PhysRevD.99.104033
Abbott, B. P., Nichols, D., Nissanke, S., & al., E. (2019). Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 882(2), L24-L24.
Abbott, B. P., Nichols, D., Nissanke, S., & al., E. (2019). Constraining the p-Mode–g-Mode Tidal Instability with GW170817. Physical Review Letters, 122(6), 61104.
Abbott, B. P., Nichols, D., Nissanke, S., & al., E. (2019). Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D. Particles and Fields, 100(6). https://doi.org/10.1103/PhysRevD.100.062001
Abbott, B. P., Nichols, D., Nissanke, S., & al., E. (2019). GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 9(3), 31040.
Abbott, B. P., Nichols, D., Nissanke, S., & al., E. (2019). Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 875(2), 161.
Abbott, B. P., Nichols, D., Nissanke, S., & al., E. (2019). Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D. Particles and Fields, 99(12), 122002.
Abbott, B. P., Nichols, D., Nissanke, S., & al., E. (2019). Properties of the binary neutron star merger GW170817. Physical Review X, 9(1), 11001.
Abbott, B. P., Nichols, D., Nissanke, S., & al., E. (2019). Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO’s Second Observing Run. Physical Review Letters, 123(16). https://doi.org/10.1103/PhysRevLett.123.161102
Abbott, B. P., Nichols, D., Nissanke, S., & al., E. (2019). Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO’s Second Observing Run. Astrophysical Journal, 874(2), 163.
Abbott, B. P., Nichols, D., Nissanke, S., & al., E. (2019). Search for gravitational waves from a long-lived remnant of the binary neutron star merger GW170817. Astrophysical Journal, 875(2), 160.
Abbott, B. P., Nichols, D., Nissanke, S., & al., E. (2019). Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D. Particles and Fields, 100(6). https://doi.org/10.1103/PhysRevD.100.064064
Abbott, B. P., Nichols, D., Nissanke, S., & al., E. (2019). Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run. Physical Review D. Particles and Fields, 100(6). https://doi.org/10.1103/PhysRevD.100.061101
Abbott, B. P., Nichols, D., Nissanke, S., & al., E. (2019). Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO. Astrophysical Journal, 875(2), 122.
Abbott, B. P., Nichols, D., Nissanke, S., & al., E. (2019). Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015-2017 LIGO Data. Astrophysical Journal, 879(1), 10.
Abbott, B. P., Nichols, D., Nissanke, S., & al., E. (2019). Tests of General Relativity with GW170817. Physical Review Letters, 123(1), 11102.
Abbott, B. P., Nichols, D., Nissanke, S., & al., E. (2019). Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1. Physical Review D. Particles and Fields, 100(10). https://doi.org/10.1103/PhysRevD.100.104036
Abbott, B. P., Nissanke, S., & al., E. (2019). All-Sky Search for Short Gravitational-Wave Bursts in the Second Advanced LIGO and Advanced Virgo Run. Physical Review D. Particles and Fields, 100(2), 024017. https://doi.org/10.1103/PhysRevD.100.024017
Abbott, B. P., Nissanke, S., & al., E. (2019). Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D. Particles and Fields, 100(12), 122002. https://doi.org/10.1103/PhysRevD.100.122002
Abbott, B. P., Nissanke, S., & al., E. (2019). Search for gravitational-wave signals associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 886, 75. https://doi.org/10.3847/1538-4357/ab4b48
Acernese, F., Bulten, H. J., Caudill, S., Ghosh, A., Hinderer, T., Nelemans, G., Nichols, D., Nissanke, S., van Bakel, N., van Beuzekom, M., van den Brand, J. F. J., Van Den Broeck, C., Vardaro, M., & Virgo Collaboration (2019). Advanced Virgo Status. Journal of Physics. Conference Series, 1342, [012010]. https://doi.org/10.1088/1742-6596/1342/1/012010[details]
Acernese, F., Nissanke, S., & al., E. (2019). Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 123(23), 231108. https://doi.org/10.1103/PhysRevLett.123.231108
Barack, L., Nissanke, S., Bertone, G., Gaggero, D., Hinderer, T., Kavanagh, B. J., Nelemans, G., Schmidt, P., Tauris, T. M., Volonteri, M., Jaodand, A., Nichols, D., Vercnocke, B., Williamson, A., & LIGO-Virgo collaboration (2019). Black holes, gravitational waves and fundamental physics: a roadmap. Classical and Quantum Gravity, 36(14), [143001]. https://doi.org/10.1088/1361-6382/ab0587[details]
Burns, E., Fermi Gamma-Ray Burst Monitor, Bulten, H. J., Caudill, S., Ghosh, A., Nelemans, G., Nissanke, S., van Bakel, N., van Beuzekom, M., van den Brand, J. F. J., Van Den Broeck, C., & The LIGO Scientific Collaboration and The Virgo Collaboration (2019). A Fermi Gamma-ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 871(1), [90]. https://doi.org/10.3847/1538-4357/aaf726[details]
Hinderer, T., Nissanke, S., Foucart, F., Hotokezaka, K., Vincent, T., Kasliwal, M., Schmidt, P., Williamson, A. R., Nichols, D. A., Duez, M. D., Kidder, L. E., Pfeiffer, H. P., & Scheel, M. A. (2019). Distinguishing the nature of comparable-mass neutron star binary systems with multimessenger observations: GW170817 case study. Physical Review D, 100(6), [63021]. https://doi.org/10.1103/PhysRevD.100.063021[details]
Raaijmakers, G., Riley, T. E., Watts, A. L., Greif, S. K., Morsink, S. M., Hebeler, K., Schwenk, A., Hinderer, T., Nissanke, S., Guillot, S., Arzoumanian, Z., Bogdanov, S., Chakrabarty, D., Gendreau, K. C., Ho, W. C. G., Lattimer, J. M., Ludlam, R. M., & Wolff, M. T. (2019). A NICER View of PSR J0030+0451: Implications for the Dense Matter Equation of State. Astrophysical Journal Letters, 887(1), [L22]. https://doi.org/10.3847/2041-8213/ab451a[details]
Soares-Santos, M., [No Value], O., & Nissanke, S. M. (2019). First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal, 876(1), L7-L7.
2018
Foucart, F., Hinderer, T., & Nissanke, S. (2018). Remnant baryon mass in neutron star-black hole mergers: Predictions for binary neutron star mimickers and rapidly spinning black holes. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 98(8), [081501(R)]. https://doi.org/10.1103/PhysRevD.98.081501[details]
The LIGO Scientific Collaboration and The Virgo Collaboration, The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, The Las Cumbres Observatory Collaboration, The VINROUGE Collaboration, & The MASTER Collaboration (2017). A gravitational-wave standard siren measurement of the Hubble constant. Nature, 551(7678), 85-88. https://doi.org/10.1038/nature24471[details]
Abbott, B. P., & LIGO Scientific Collaboration and Virgo Collaboration (2016). Search for transient gravitational waves in coincidence with short-duration radio transients during 2007-2013. Physical Review D. Particles and Fields, 93(12), [122008]. https://doi.org/10.1103/PhysRevD.93.122008[details]
The LIGO Scientific Collaboration and the Virgo Collaboration, The Australian Square Kilometer Array Pathfinder (ASKAP) Collaboration, The BOOTES Collaboration, The Dark Energy Survey and the Dark Energy Camera GW-EM Collaborations, The Fermi GBM Collaboration, The Fermi LAT Collaboration, The GRAvitational Wave Inaf TeAm (GRAWITA), The INTEGRAL Collaboration, The Intermediate Palomar Transient Factory (iPTF) Collaboration, The InterPlanetary Network, The J-GEM Collaboration, The La Silla-QUEST Survey, The Liverpool Telescope Collaboration, The Low Frequency Array (LOFAR) Collaboration, The MASTER Collaboration, The MAXI Collaboration, The Murchison Wide-field Array (MWA) Collaboration, The Pan-STARRS Collaboration, The PESSTO Collaboration, ... The VISTA Collaboration (2016). Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914. Astrophysical Journal Letters, 826(1), [L13]. https://doi.org/10.3847/2041-8205/826/1/L13[details]
The LIGO Scientific Collaboration and the Virgo Collaboration, The Australian Square Kilometer Array Pathfinder (ASKAP) Collaboration, The BOOTES Collaboration, The Dark Energy Survey and the Dark Energy Camera GW-EM Collaborations, The Fermi GBM Collaboration, The Fermi LAT Collaboration, The GRAvitational Wave Inaf TeAm (GRAWITA), The INTEGRAL Collaboration, The Intermediate Palomar Transient Factory (iPTF) Collaboration, The InterPlanetary Network, The J-GEM Collaboration, The La Silla-QUEST Survey, The Liverpool Telescope Collaboration, The Low Frequency Array (LOFAR) Collaboration, The MASTER Collaboration, The MAXI Collaboration, The Murchison Wide-field Array (MWA) Collaboration, The Pan-STARRS Collaboration, The PESSTO Collaboration, ... The VISTA Collaboration (2016). Supplement: "Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914" (2016, ApJL, 826, L13). The Astrophysical Journal. Supplement Series, 225(1), [8]. https://doi.org/10.3847/0067-0049/225/1/8[details]
Baker, J., Haiman, Z., Rossi, E. M., Berger, E., Brandt, N., Breedt, E., ... Volonteri, M. (2019). Multimessenger science opportunities with mHz gravitational waves. Bulletin - American Astronomical Society, 51(3), 123.
2017
Rowlinson, A., Broderick, J., Jonker, P. G., Fender, R. P., Wijers, R. A. M. J., Stappers, B. W., Ghosh, S., Nissanke, S., & Shulevski, A. (2017). LIGO/Virgo G211117 / GW151226: LOFAR follow-up. GRB Coordinates Network, Circular Service, 20372. https://gcn.gsfc.nasa.gov/gcn/gcn3/20372.gcn3[details]
Greif, S. K., Lattimer, J. M., Hebeler, K., Hinderer, T., Schwenk, A., Riley, T. E., Ho, W. C. G., Raaijmakers, G. & Nissanke, S. (16-4-2021). Constraints on the dense matter equation of state and neutron star properties from NICER's mass-radius estimate of PSR J0740+6620 and multimessenger observations: posterior samples and scripts for generating plots. Zenodo. https://doi.org/10.5281/zenodo.4696232
2020
Schwenk, A., Greif, S. K., Ludlam, R. M., Raaijmakers, G., Riley, T. E., Lattimer, J. M., Hebeler, K., Hinderer, T., Guillot, S., Watts, A. L. & Nissanke, S. (16-3-2020). Constraining the dense matter equation of state with joint analysis of NICERand LIGO/Virgo measurements: Data for generating plots. Zenodo. https://doi.org/10.5281/zenodo.3711718
Chaves, A. G., Webb, S., Anand, S., Taggart, K., Sharma, Y., De, K., Hotokezaka, K., Jencson, J. E., Caballero-Garc?a, M. D., Valeev, A. F., Buckley, D. A. H., Gatkine, P., Kool, E. C., Nugent, P. E., Castro-Tirado, A. J., Cook, D. O., Sollerman, J., Goobar, A., Fremling, U. C., … Kumar, H. (1-1-2020). Follow-up of candidate counterparts of S190814bv. Strasbourg Astronomical Data Center. https://doi.org/10.26093/cds/vizier.18900131
The UvA website uses cookies and similar technologies to ensure the basic functionality of the site and for statistical and optimisation purposes. It also uses cookies to display content such as YouTube videos and for marketing purposes. This last category consists of tracking cookies: these make it possible for your online behaviour to be tracked. You consent to this by clicking on Accept. Also read our Privacy statement
Necessary
Cookies that are essential for the basic functioning of the website. These cookies are used to enable students and staff to log in to the site, for example.
Necessary & Optimalisation
Cookies that collect information about visitor behaviour anonymously to help make the website work more effectively.
Necessary & Optimalisation & Marketing
Cookies that make it possible to track visitors and show them personalised adverts. These are used by third-party advertisers to gather data about online behaviour. To watch Youtube videos you need to enable this category.