For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.

Dr. A. (Antonia) Praetorius

Assistant Professor
Faculty of Science
Institute for Biodiversity and Ecosystem Dynamics

Visiting address
  • Science Park 904
Postal address
  • Postbus 94240
    1090 GE Amsterdam
Social media
  • Profile

    I am an assistant professor in Environmental Chemistry at the Department of Ecosystem & Landscape Dynamics (ELD) at the Institute for Biodiversity and Ecosystem Dynamics (IBED). Previously I worked as a Researcher at Stockholm University (Sweden) and as a Postdoc at the University of Vienna (Austria). I studied chemistry and obtained my PhD from ETH Zurich (Switzerland).

    My research interests centre around assessing the environmental fate of emerging chemical contaminants. I am particularly interested in understanding how the fundamental physical and chemical properties of a contaminant drive its transformation and transport behaviour in aquatic and terrestrial environments and how we can utilise this understanding to build models for predicting contaminant fate and concentrations. I have a strong expertise in particulate contaminants, such as engineered nanomaterials, nano- and microplastics and microfibers. Additionally, I am working on (persistent) organic contaminants, such as PFAS and (psycho)pharmaceuticals, as well as emerging contaminants in circular systems (such as wastewater reuse).  I very much enjoy working in interdisciplinary teams and I am convinced that addressing potential risks and designing effective mitigation strategies or regulations for emerging contaminants requires joint forces from different disciplines. 

    In our projects we combine modelling approaches with laboratory-based studies on contaminant fate processes (e.g. degradation/transformation, aggregation, sedimentation). We also work towards improving analytical methods for identifying emerging contaminants in different environmental matrices. 

    More information on ongoing projects

    µPLANET – Microplatic Long-range transport Assessment aNd Estimation Toolstogether with Marianne Seijo we are developing a global-scale multimedia fate and transport model for microplastics and their additives. Our model is based on the Full Multi, an open-source framework for modelling the transport and fate of nano- and microplastics in aquatic systems, developed previously with Prado Domercq and Matthew MacLeod from Stockholm University (find the code on GitHub: Full Multi GitHub repository). 

    We are also contributing to developing an open-source unit world multimedia modeling platform for microplastics in the environment in the UTOPIA project and to better understanding and modelling micro- and nanoplastic fragmentation in the FRAGMENT-MNP project

    META – Citizen Science for Microfiber Detection: together with Lies Jacobs, Bernou BovenCameron Brick and interested Dutch citizens we are investigating the factors that drive the release of synthetic microfibers—one of the most frequently detected forms of microplastics in the environment—from washing of textiles in real households. If you are interested in participating, check out our website for more information:


  • Publications


    • Keller, A. A., Zheng, Y., Praetorius, A., Quik, J. T. K., & Nowack, B. (2024). Predicting environmental concentrations of nanomaterials for exposure assessment - a review. NANOIMPACT, 33, Article 100496.
    • Luederwald, S., Davies, J., Fernandes, T. F., Praetorius, A., Sergent, J. A., Tatsi, K., Tell, J., Timmer, N., & Wagner, S. (2024). Practical considerations to optimize aquatic testing of particulate material, with focus on nanomaterials. Environmental Science: Nano. Advance online publication.




    • Badetti, E., Brunelli, A., Basei, G., Gallego-Urrea, J. A., Stoll, S., Walch, H., Praetorius, A., von der Kammer, F., & Marcomini, A. (2021). Novel multimethod approach for the determination of the colloidal stability of nanomaterials in complex environmental mixtures using a global stability index: TiO2 as case study. Science of the Total Environment, 801, Article 149607. [details]
    • Mitrano, D. M., Praetorius, A., Lespes, G., & Slaveykova, V. I. (2021). Editorial: Biogeochemistry of Anthropogenic Particles. Frontiers in Environmental Science, 9, Article 667140. [details]
    • Pavlicek, A., Part, F., Rose, G., Praetorius, A., Miernicki, M., Gazsó, A., & Huber-Humer, M. (2021). A European nano-registry as a reliable database for quantitative risk assessment of nanomaterials? A comparison of national approaches. NANOIMPACT, 21, Article 100276. Advance online publication. [details]


    • Praetorius, A. (Guest ed.) (2020). Research Topic: Biogeochemistry of Anthropogenic Particles. Frontiers in Environmental Science, 8.
    • Praetorius, A., Badetti, E., Brunelli, A., Clavier, A., Gallego-Urrea, J. A., Gondikas, A., Hasselloev, M., Hofmann, T., Mackevica, A., Marcomini, A., Peijnenburg, W., Quik, J. T. K., Seijo, M., Stoll, S., Tepe, N., Walch, H., & von der Kammer, F. (2020). Strategies for determining heteroaggregation attachment efficiencies of engineered nanoparticles in aquatic environments. Environmental Science: Nano, 7(2), 351-367.


    • Clavier, A., Praetorius, A., & Stoll, S. (2019). Determination of nanoparticle heteroaggregation attachment efficiencies and rates in presence of natural organic matter monomers. Monte Carlo modelling. Science of the Total Environment, 650(1), 530-540.
    • Miernicki, M., Hofmann, T., Eisenberger, I., von der Kammer, F., & Praetorius, A. (2019). Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nature Nanotechnology, 14(3), 208-216.
    • Williams, R. J., Harrison, S., Keller, V., Kuenen, J., Lofts, S., Praetorius, A., Svendsen, C., Vermeulen, L. C., & van Wijnen, J. (2019). Models for assessing engineered nanomaterial fate and behaviour in the aquatic environment. Current Opinion in Environmental Sustainability, 36, 105-115.


    • Domercq, P., Praetorius, A., & Boxall, A. B. A. (2018). Emission and fate modelling framework for engineered nanoparticles in urban aquatic systems at high spatial and temporal resolution. Environmental Science: Nano, 5(2), 533-543.
    • Gondikas, A., von der Kammer, F., Kaegi, R., Borovinskaya, O., Neubauer, E., Navratilova, J., Praetorius, A., Cornelis, G., & Hofmann, T. (2018). Where is the nano? Analytical approaches for the detection and quantification of TiO2 engineered nanoparticles in surface waters. Environmental Science: Nano, 5(2), 313-326.
    • Monikh, F. A., Praetorius, A., Schmid, A., Kozin, P., Meisterjahn, B., Makarova, E., Hofmann, T., & von der Kammer, F. (2018). Scientific rationale for the development of an OECD test guideline on engineered nanomaterial stability. NANOIMPACT, 11, 42-50.


    • Hueffer, T., Praetorius, A., Wagner, S., von der Kammer, F., & Hofiliannte, T. (2017). Microplastic Exposure Assessment in Aquatic Environments: Learning from Similarities and Differences to Engineered Nanoparticles. Environmental Science and Technology, 51(5), 2499-2507.
    • Praetorius, A., Gundlach-Graham, A., Goldberg, E., Fabienke, W., Navratilova, J., Gondikas, A., Kaegi, R., Gunther, D., Hofmann, T., & von der Kammer, F. (2017). Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environmental Science: Nano, 4(2), 307-314.


    • Peijnenburg, W., Praetorius, A., Scott-Fordsmand, J., & Cornelis, G. (2016). Fate assessment of engineered nanoparticles in solids dominated media - Current insights and the way forward. Environmental Pollution, 218, 1365-1369.


    • Navratilova, J., Praetorius, A., Gondikas, A., Fabienke, W., von der Kammer, F., & Hofmann, T. (2015). Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS. International Journal of Environmental Research and Public Health, 12(12), 15756-15768.
    • Sani-Kast, N., Scheringer, M., Slomberg, D., Labille, J., Praetorius, A., Ollivier, P., & Hungerbuehler, K. (2015). Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles. Science of the Total Environment, 535, 150-159.


    • Praetorius, A., Labille, J., Scheringer, M., Thill, A., Hungerbuehler, K., & Bottero, J-Y. (2014). Heteroaggregation of Titanium Dioxide Nanoparticles with Model Natural Colloids under Environmentally Relevant Conditions. Environmental Science and Technology, 48(18), 10690-10698.
    • Praetorius, A., Tufenkji, N., Goss, K-U., Scheringer, M., von der Kammer, F., & Elimelech, M. (2014). The road to nowhere: equilibrium partition coefficients for nanoparticles. Environmental Science: Nano, 1(4), 317-323.
    • Scheringer, M., Praetorius, A., & Goldberg, E. S. (2014). Environmental Fate and Exposure Modeling of Nanomaterials. In J. R. Lead, & E. Valsami-Jones (Eds.), Nanoscience and the Environment (pp. 89-125). (Frontiers in Nanoscience; Vol. 7). Elsevier.


    • Praetorius, A., Arvidsson, R., Molander, S., & Scheringer, M. (2013). Facing complexity through informed simplifications: a research agenda for aquatic exposure assessment of nanoparticles. Environmental Science Processes & Impacts, 15(1), 161-168.


    • Praetorius, A., Scheringer, M., & Hungerbuehler, K. (2012). Development of Environmental Fate Models for Engineered Nanoparticles-A Case Study of TiO2 Nanoparticles in the Rhine River. Environmental Science and Technology, 46(12), 6705-6713.


    • Hornung, J., Fankhauser, D., Shirtcliff, L. D., Praetorius, A., Schweizer, W. B., & Diederich, F. (2011). Cycloalkane and Alicyclic Heterocycle Complexation by New Switchable Resorcin[4] arene-Based Container Molecules: NMR and ITC Binding Studies. Chemistry-A European Journal, 17(44), 12362-12371.


    • Reinoso, S., Piedra-Garza, L. F., Dickman, M. H., Praetorius, A., Biesemans, M., Willem, R., & Kortz, U. (2010). Trilacunary A-beta-Keggin tungstogermanates and -silicates functionalized with phenyltin(IV) electrophiles. Dalton Transactions, 39(1), 248-255.


    • Praetorius, A., Bailey, D. M., Schwarzlose, T., & Nau, W. M. (2008). Design of a fluorescent dye for indicator displacement from cucurbiturils: A macrocycle-responsive fluorescent switch operating through a pK(a) shift. Organic Letters, 10(18), 4089-4092.
    • Reinoso, S., Dickman, M. H., Praetorius, A., & Kortz, U. (2008). Low-temperature phase of hexaguanidinium heptamolybdate monohydrate. Acta Crystallographica. Section E-Structure Reports Online, 64, M614-U111.
    • Reinoso, S., Dickman, M. H., Praetorius, A., Piedra-Garza, L. F., & Kortz, U. (2008). Phenyltin-substituted 9-tungstogermanate and comparison with its tungstosilicate analogue. Inorganic Chemistry, 47(19), 8798-8806.


    • Awasthi, A. K., Bougas, K., Constantine, L., Cunningham, E., Keyte, I., Tyrer, D., Chen, C., Elumalai, P., Huang, M., Liu, S., Yi, X., Ying, G., Zhang, Q., Zhao, J., Chen, Y., Liu, S., Shi, H., Diamond, M., Kah, M., ... Yamamoto, H. (2020). An Assessment Report on Issues of Concern: Chemicals and Waste Issues Posing Risks to Human Health and the Environment. United Nations Environment Programme. [details]

    Prize / grant

    • Jacobs, L., Praetorius, A., Brick, C. & van Berlo, Z. (2023). IMPETUS Sustaining Grant.
    • Jacobs, L., Praetorius, A., Brick, C. & van Berlo, Z. (2023). Midsize Project Grant.
    • Praetorius, A. (2020). NWA Idea Generator Grant.

    Journal editor

    • Praetorius, A. (editor) (2022-2025). Environmental Science: Nano (Journal).



    This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications. Log in to Personal Page Publication Selection tool to manage the visibility of your publications on this list.
  • Ancillary activities
    No ancillary activities