For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.

Dr. A. (Antonia) Praetorius

Assistant Professor
Faculty of Science
Institute for Biodiversity and Ecosystem Dynamics

Visiting address
  • Science Park 904
  • Room number: C4.212
Postal address
  • Postbus 94240
    1090 GE Amsterdam
Social media
  • Profile

    I am an assistant professor in environmental chemistry at the Department of Ecosystem & Landscape Dynamics (ELD) at the Institute for Biodiversity and Ecosystem Dynamics (IBED). Previously I worked as a Researcher at Stockholm University (Sweden) and as a Postdoc at the University of Vienna (Austria). I studied chemistry and obtained my PhD from ETH Zurich (Switzerland).

    My research interests centre around assessing the environmental fate of emerging chemical contaminants. I am particularly interested in understanding how the fundamental physical and chemical properties of a contaminant drive its transformation and transport behaviour in aquatic and terrestrial environments and how we can utilise this understanding to build models for predicting contaminant fate and concentrations. Most of my projects to date have focused on particulate contaminants, such as engineered nanoparticles as well as nano- and microplastics. I very much enjoy working in interdisciplinary projects and I am convinced that addressing potential risks and adequate regulations of emerging contaminants requires joint forces from different disciplines. 

  • Publications


    • Davey, C. J. E., Kraak, M. H. S., Praetorius, A., ter Laak, T. L., & van Wezel, A. P. (2022). Occurrence, hazard, and risk of psychopharmaceuticals and illicit drugs in European surface waters. Water Research, 222, [118878].
    • Domercq, P., Praetorius, A., & MacLeod, M. (2022). The Full Multi: An open-source framework for modelling the transport and fate of nano- and microplastics in aquatic systems. Environmental Modelling & Software, 148, [105291].
    • Polhill, L., de Bruijn, R., Amaral-Zettler, L., Praetorius, A., & van Wezel, A. (2022). Daphnia magna's Favorite Snack: Biofouled Plastics. Environmental Toxicology and Chemistry, 41(8), 1977-1981.


    • Badetti, E., Brunelli, A., Basei, G., Gallego-Urrea, J. A., Stoll, S., Walch, H., Praetorius, A., von der Kammer, F., & Marcomini, A. (2021). Novel multimethod approach for the determination of the colloidal stability of nanomaterials in complex environmental mixtures using a global stability index: TiO2 as case study. Science of the Total Environment, 801, [149607]. [details]
    • Mitrano, D. M., Praetorius, A., Lespes, G., & Slaveykova, V. I. (2021). Editorial: Biogeochemistry of Anthropogenic Particles. Frontiers in Environmental Science, 9, [667140]. [details]
    • Pavlicek, A., Part, F., Rose, G., Praetorius, A., Miernicki, M., Gazsó, A., & Huber-Humer, M. (2021). A European nano-registry as a reliable database for quantitative risk assessment of nanomaterials? A comparison of national approaches. NANOIMPACT, 21, [100276]. [details]


    • Praetorius, A. (Guest ed.) (2020). Research Topic: Biogeochemistry of Anthropogenic Particles. Frontiers in Environmental Science, 8.
    • Praetorius, A., Badetti, E., Brunelli, A., Clavier, A., Gallego-Urrea, J. A., Gondikas, A., Hasselloev, M., Hofmann, T., Mackevica, A., Marcomini, A., Peijnenburg, W., Quik, J. T. K., Seijo, M., Stoll, S., Tepe, N., Walch, H., & von der Kammer, F. (2020). Strategies for determining heteroaggregation attachment efficiencies of engineered nanoparticles in aquatic environments. Environmental Science: Nano, 7(2), 351-367.


    • Clavier, A., Praetorius, A., & Stoll, S. (2019). Determination of nanoparticle heteroaggregation attachment efficiencies and rates in presence of natural organic matter monomers. Monte Carlo modelling. Science of the Total Environment, 650(1), 530-540.
    • Miernicki, M., Hofmann, T., Eisenberger, I., von der Kammer, F., & Praetorius, A. (2019). Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nature Nanotechnology, 14(3), 208-216.
    • Williams, R. J., Harrison, S., Keller, V., Kuenen, J., Lofts, S., Praetorius, A., Svendsen, C., Vermeulen, L. C., & van Wijnen, J. (2019). Models for assessing engineered nanomaterial fate and behaviour in the aquatic environment. Current Opinion in Environmental Sustainability, 36, 105-115.


    • Domercq, P., Praetorius, A., & Boxall, A. B. A. (2018). Emission and fate modelling framework for engineered nanoparticles in urban aquatic systems at high spatial and temporal resolution. Environmental Science: Nano, 5(2), 533-543.
    • Gondikas, A., von der Kammer, F., Kaegi, R., Borovinskaya, O., Neubauer, E., Navratilova, J., Praetorius, A., Cornelis, G., & Hofmann, T. (2018). Where is the nano? Analytical approaches for the detection and quantification of TiO2 engineered nanoparticles in surface waters. Environmental Science: Nano, 5(2), 313-326.
    • Monikh, F. A., Praetorius, A., Schmid, A., Kozin, P., Meisterjahn, B., Makarova, E., Hofmann, T., & von der Kammer, F. (2018). Scientific rationale for the development of an OECD test guideline on engineered nanomaterial stability. NANOIMPACT, 11, 42-50.


    • Hueffer, T., Praetorius, A., Wagner, S., von der Kammer, F., & Hofiliannte, T. (2017). Microplastic Exposure Assessment in Aquatic Environments: Learning from Similarities and Differences to Engineered Nanoparticles. Environmental Science and Technology, 51(5), 2499-2507.
    • Praetorius, A., Gundlach-Graham, A., Goldberg, E., Fabienke, W., Navratilova, J., Gondikas, A., Kaegi, R., Gunther, D., Hofmann, T., & von der Kammer, F. (2017). Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environmental Science: Nano, 4(2), 307-314.


    • Peijnenburg, W., Praetorius, A., Scott-Fordsmand, J., & Cornelis, G. (2016). Fate assessment of engineered nanoparticles in solids dominated media - Current insights and the way forward. Environmental Pollution, 218, 1365-1369.


    • Navratilova, J., Praetorius, A., Gondikas, A., Fabienke, W., von der Kammer, F., & Hofmann, T. (2015). Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS. International Journal of Environmental Research and Public Health, 12(12), 15756-15768.
    • Sani-Kast, N., Scheringer, M., Slomberg, D., Labille, J., Praetorius, A., Ollivier, P., & Hungerbuehler, K. (2015). Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles. Science of the Total Environment, 535, 150-159.


    • Praetorius, A., Labille, J., Scheringer, M., Thill, A., Hungerbuehler, K., & Bottero, J-Y. (2014). Heteroaggregation of Titanium Dioxide Nanoparticles with Model Natural Colloids under Environmentally Relevant Conditions. Environmental Science and Technology, 48(18), 10690-10698.
    • Praetorius, A., Tufenkji, N., Goss, K-U., Scheringer, M., von der Kammer, F., & Elimelech, M. (2014). The road to nowhere: equilibrium partition coefficients for nanoparticles. Environmental Science: Nano, 1(4), 317-323.
    • Scheringer, M., Praetorius, A., & Goldberg, E. S. (2014). Environmental Fate and Exposure Modeling of Nanomaterials. In J. R. Lead, & E. Valsami-Jones (Eds.), Nanoscience and the Environment (pp. 89-125). (Frontiers in Nanoscience; Vol. 7). Elsevier.


    • Praetorius, A., Arvidsson, R., Molander, S., & Scheringer, M. (2013). Facing complexity through informed simplifications: a research agenda for aquatic exposure assessment of nanoparticles. Environmental Science Processes & Impacts, 15(1), 161-168.


    • Praetorius, A., Scheringer, M., & Hungerbuehler, K. (2012). Development of Environmental Fate Models for Engineered Nanoparticles-A Case Study of TiO2 Nanoparticles in the Rhine River. Environmental Science and Technology, 46(12), 6705-6713.


    • Hornung, J., Fankhauser, D., Shirtcliff, L. D., Praetorius, A., Schweizer, W. B., & Diederich, F. (2011). Cycloalkane and Alicyclic Heterocycle Complexation by New Switchable Resorcin[4] arene-Based Container Molecules: NMR and ITC Binding Studies. Chemistry-A European Journal, 17(44), 12362-12371.


    • Reinoso, S., Piedra-Garza, L. F., Dickman, M. H., Praetorius, A., Biesemans, M., Willem, R., & Kortz, U. (2010). Trilacunary A-beta-Keggin tungstogermanates and -silicates functionalized with phenyltin(IV) electrophiles. Dalton Transactions, 39(1), 248-255.


    • Praetorius, A., Bailey, D. M., Schwarzlose, T., & Nau, W. M. (2008). Design of a fluorescent dye for indicator displacement from cucurbiturils: A macrocycle-responsive fluorescent switch operating through a pK(a) shift. Organic Letters, 10(18), 4089-4092.
    • Reinoso, S., Dickman, M. H., Praetorius, A., & Kortz, U. (2008). Low-temperature phase of hexaguanidinium heptamolybdate monohydrate. Acta Crystallographica. Section E-Structure Reports Online, 64, M614-U111.
    • Reinoso, S., Dickman, M. H., Praetorius, A., Piedra-Garza, L. F., & Kortz, U. (2008). Phenyltin-substituted 9-tungstogermanate and comparison with its tungstosilicate analogue. Inorganic Chemistry, 47(19), 8798-8806.


    • Awasthi, A. K., Bougas, K., Constantine, L., Cunningham, E., Keyte, I., Tyrer, D., Chen, C., Elumalai, P., Huang, M., Liu, S., Yi, X., Ying, G., Zhang, Q., Zhao, J., Chen, Y., Liu, S., Shi, H., Diamond, M., Kah, M., ... Yamamoto, H. (2020). An Assessment Report on Issues of Concern: Chemicals and Waste Issues Posing Risks to Human Health and the Environment. United Nations Environment Programme. [details]


    • Praetorius, A. (2020). NWA Idea Generator Grant.
    This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications. Log in to Personal Page Publication Selection tool to manage the visibility of your publications on this list.
  • Ancillary activities
    No ancillary activities