For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.

Dr. D. (Dolly) Sapra

Faculty of Science
Informatics Institute

Visiting address
  • Science Park 904
  • Room number: L5.47
Postal address
  • Postbus 94323
    1090 GH Amsterdam
  • Publications

    2023

    • Aghapour, E., Sapra, D., Pimentel, A. D., & Pathania, A. (2023). PELSI: Power-Efficient Layer-Switched Inference. In 2023 IEEE 29th International Conference on Embedded and Real-Time Computing Systems and Applications: RTCSA 2023 : Niigata, Japan, 30 August -1 September 2023 : proceedings (pp. 12-17). IEEE Computer Society. https://doi.org/10.1109/RTCSA58653.2023.00011 [details]
    • Sapra, D., & Pimentel, A. D. (2023). Exploring Multi-core Systems with Lifetime Reliability and Power Consumption Trade-offs. In C. Silvano, C. Pilato, & M. Reichenbach (Eds.), Embedded Computer Systems: Architectures, Modeling, and Simulation: 23rd International Conference, SAMOS 2023, Samos, Greece, July 2–6, 2023 : proceedings (pp. 72–87). (Lecture Notes in Computer Science; Vol. 14385). Springer. https://doi.org/10.1007/978-3-031-46077-7_6 [details]

    2022

    • Aghapour, E., Sapra, D., Pimentel, A., & Pathania, A. (2022). CPU-GPU Layer-Switched Low Latency CNN Inference. In H. Fabelo, S. Ortega, & A. Skavhaug (Eds.), 2022 25th Euromicro Conference on Digital System Design: DSD 2022 : 31 August-2 September 2022, Maspalomas, Spain : proceedings (pp. 324-331). IEEE Computer Society. https://doi.org/10.1109/DSD57027.2022.00051 [details]
    • Minakova, S., Sapra, D., Stefanov, T., & Pimentel, A. D. (2022). Scenario Based Run-time Switching for Adaptive CNN-based Applications at the Edge. ACM Transactions on Embedded Computing Systems, 21(2), Article 14. Advance online publication. https://doi.org/10.1145/3488718 [details]
    • Sapra, D., & Pimentel, A. D. (2022). Designing convolutional neural networks with constrained evolutionary piecemeal training. Applied Intelligence, 52(15), 17103–17117. https://doi.org/10.1007/s10489-021-02679-7 [details]

    2021

    • Odyurt, U., Sapra, D., & Pimentel, A. D. (2021). The Choice of AI Matters: Alternative Machine Learning Approaches for CPS Anomalies. In H. Fujita, A. Selamat, JC.-W. Lin, & M. Ali (Eds.), Advances and Trends in Artificial Intelligence : From Theory to Practice: 34th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2021, Kuala Lumpur, Malaysia, July 26–29, 2021 : proceedings (Vol. II, pp. 474-484). (Lecture Notes in Computer Science; Vol. 12799), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-030-79463-7_40 [details]
    • van Ipenburg, I., Sapra, D., & Pimentel, A. D. (2021). Exploring Cell-Based Neural Architectures for Embedded Systems. In M. Kamp, I. Koprinska, A. Bibal, T. Bouadi, B. Frénay, L. Galárraga, J. Oramas, & L. Adilova (Eds.), Machine Learning and Principles and Practice of Knowledge Discovery in Databases: International Workshops of ECML PKDD 2021, virtual event, September 13-17, 2021 : proceedings (Vol. I, pp. 363–374). (Communications in Computer and Information Science; Vol. 1524). Springer. https://doi.org/10.1007/978-3-030-93736-2_28 [details]

    2020

    • Sapra, D., & Pimentel, A. D. (2020). An evolutionary optimization algorithm for gradually saturating objective functions. In GECCO'20: proceedings of the 2020 Genetic and Evolutionary Computation Conference : July 8-12, 2020, Cancún, Mexico (pp. 886-893). Association for Computing Machinery. https://doi.org/10.1145/3377930.3389834 [details]
    • Sapra, D., & Pimentel, A. D. (2020). Constrained evolutionary piecemeal training to design convolutional neural networks. In H. Fujita, P. Fournier-Viger, M. Ali, & J. Sasaki (Eds.), Trends in Artificial Intelligence Theory and Applications : Artificial Intelligence Practices: 33rd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2020, Kitakyushu, Japan, September 22-25, 2020 : proceedings (pp. 709-721). (Lecture Notes in Computer Science; Vol. 12144), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-030-55789-8_61 [details]
    • Sapra, D., & Pimentel, A. D. (2020). Deep Learning Model Reuse and Composition in Knowledge Centric Networking. In ICCCN 2020: the 29th International Conference on Computer Communication and Networks : final program : August 3-August 6, 2020, Honolulu, Hawaii, USA (pp. 716-726). (Proceedings International Conference on Computer Communications and Networks; Vol. 29). IEEE. https://doi.org/10.1109/ICCCN49398.2020.9209668 [details]

    2019

    • Meloni, P., Loi, D., Busia, P., Deriu, G., Pimentel, A. D., Sapra, D., Stefanov, T., Minakova, S., Conti, F., Benini, L., Pintor, M., Biggio, B., Moser, B., Shepeleva, N., Fragoulis, N., Theodorakopoulos, I., Masin, M., & Palumbo, F. (2019). Optimization and deployment of CNNs at the Edge: The ALOHA experience. In ACM International Conference on Computing Frontiers 2019 (CF 2019) : proceedings : April 30-May 2, 2019, Alghero, Sardinia, Italy (pp. 326-332). Association for Computing Machinery. https://doi.org/10.1145/3310273.3323435 [details]

    2018

    • Meloni, P., Loi, D., Deriu, G., Pimentel, A. D., Sapra, D., Moser, B., Shepeleva, N., Conti, F., Benini, L., Ripolles, O., Solans, D., Pintor, M., Biggio, B., Stefanov, T., Minakova, S., Fragoulis, N., Theodorakopoulos, I., Masin, M., & Palumbo, F. (2018). ALOHA: an architectural-aware framework for deep learning at the edge. In M. Martina, & W. Fornanciari (Eds.), INTelligent Embedded Systems Architectures and Applications (INTESA): workshop proceedings 2018 : October 4, 2018, Torino, Italy (pp. 19-26). The Association for Computing Machinery. https://doi.org/10.1145/3285017.3285019 [details]
    • Meloni, P., Loi, D., Deriu, G., Pimentel, A. D., Sapra, D., Pintor, M., Biggio, B., Ripolles, O., Solans, D., Conti, F., Benini, L., Stefanov, T., Minakova, S., Moser, B., Shepeleva, N., Masin, M., Palumbo, F., Fragoulis, N., & Theodorakopoulos, I. (2018). Architecture-aware design and implementation of CNN algorithms for embedded inference: the ALOHA project. In Proceeding of 2018 30th International Conference on Microelectronics (pp. 52-55). IEEE. https://doi.org/10.1109/ICM.2018.8704093 [details]

    2023

    2017

    • Sapra, D., & Altmeyer, S. (2017). Work In Progress: Design-Space Exploration of Multi-core Processors for Safety-Critical Real-Time Systems. In 2017 IEEE Real-Time Systems Symposium: proceedings : 5-8 December 2017, Paris, France (pp. 360-362). IEEE Computer Society. https://doi.org/10.1109/RTSS.2017.00040 [details]

    Prize / grant

    • Sapra, D. (2020). Best Paper Award.

    2022

    • Sapra, D. (2022). Efficient neural architectures for edge devices. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
    This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications. Log in to Personal Page Publication Selection tool to manage the visibility of your publications on this list.
  • Ancillary activities
    No ancillary activities