For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.

Dr. A.C. (Andrew) Yates

Faculty of Science
Informatics Institute

Visiting address
  • Science Park 904
Postal address
  • Postbus 94323
    1090 GH Amsterdam
Contact details
  • Publications

    2024

    • Krasakis, A. M., Yates, A., & Kanoulas, E. (2024). Contextualizing and Expanding Conversational Queries without Supervision. ACM Transactions on Information Systems, 42(3), Article 77. https://doi.org/10.1145/3632622 [details]
    • Nguyen, T. T., Hendriksen, M. Y., Yates, A. C., & de Rijke, M. (2024). Multimodal Learned Sparse Retrieval with Probabilistic Expansion Control. In Advances in Information Retrieval: 46th European Conference on Information Retrieval, ECIR 2024, Glasgow, UK, March 24–28, 2024 : proceedings (Vol. II, pp. 448–464). ( Lecture Notes in Computer Science; Vol. 14609). Springer. https://doi.org/10.48550/arXiv.2402.17535, https://doi.org/10.1007/978-3-031-56060-6_29

    2023

    • Li, C., Yates, A., Macavaney, S., He, B., & Sun, Y. (2023). PARADE: Passage Representation Aggregation for Document Reranking. ACM Transactions on Information Systems, 42(2), Article 36. https://doi.org/10.1145/3600088
    • Nguyen, T. T., MacAvaney, S., & Yates, A. C. (2023). A Unified Framework for Learned Sparse Retrieval. In Advances in Information Retrieval: 45th European Conference on Information Retrieval, ECIR 2023, Dublin, Ireland, April 2–6, 2023 : proceedings (Vol. III, pp. 101-116). (Lecture Notes in Computer Science; Vol. 13982). Springer. https://doi.org/10.48550/arXiv.2303.13416, https://doi.org/10.1007/978-3-031-28241-6_7
    • Nguyen, T., MacAvaney, S., & Yates, A. (2023). Adapting Learned Sparse Retrieval for Long Documents. In SIGIR '23: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval : July 23-27, 2023, Taipei, Taiwan (pp. 1781-1785). Association for Computing Machinery. https://doi.org/10.1145/3539618.3591943
    • Pal, V., Yates, A., Kanoulas, E., & de Rijke, M. (2023). MultiTabQA: Generating Tabular Answers for Multi-Table Question Answering. In A. Rogers, J. Boyd-Graber, & N. Okazaki (Eds.), The 61st Conference of the Association for Computational Linguistics: Proceedings of the Conference : ACL 2023 : July 9-14, 2023 (Vol. 1, pp. 6322–6334). Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.acl-long.348 [details]

    2022

    • Farrell, M. J., Brierley, L., Willoughby, A., Yates, A., & Mideo, N. (2022). Past and future uses of text mining in ecology and evolution. Proceedings of the Royal Society B: Biological Sciences, 289(1975), Article 20212721. Advance online publication. https://doi.org/10.1098/rspb.2021.2721 [details]
    • Khandel, P., Markov, I., Yates, A., & Varbanescu, A-L. (2022). ParClick: A Scalable Algorithm for EM-based Click Models. In WWW'22: proceedings of the ACM Web Conference 2022 : April 25-29, 2022, VIrtual Event, Lyon, France (pp. 392-400). Association for Computing Machinery. https://doi.org/10.1145/3485447.3511967 [details]
    • Krasakis, A. M., Yates, A., & Kanoulas, E. (2022). Zero-shot Query Contextualization for Conversational Search. In SIGIR '22: proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval : July 11-15, 2022, Madrid, Spain (pp. 1880–1884). The Association for Computing Machinery. https://doi.org/10.48550/arXiv.2204.10613, https://doi.org/10.1145/3477495.3531769 [details]
    • Naseri, S., Dalton, J., Yates, A., & Allan, J. (2022). CEQE to SQET: A study of contextualized embeddings for query expansion. Information Retrieval Journal, 25(2), 184–208. https://doi.org/10.1007/s10791-022-09405-y [details]
    • Nguyen, T., Yates, A., Zirikly, A., Desmet, B., & Cohan, A. (2022). Improving the Generalizability of Depression Detection by Leveraging Clinical Questionnaires. In S. Muresan, P. Nakov, & A. Villavicencio (Eds.), The 60th Annual Meeting of the Association for Computational Linguistics: ACL 2022 : proceedings of the conference : May 22-27, 2022 (Vol. 1, pp. 8446-8459). Association for Computational Linguistics. https://doi.org/10.48550/arXiv.2204.10432, https://doi.org/10.18653/v1/2022.acl-long.578 [details]
    • Pradeep, R., Liu, Y., Zhang, X., Li, Y., Yates, A., & Lin, J. (2022). Squeezing Water from a Stone: A Bag of Tricks for Further Improving Cross-Encoder Effectiveness for Reranking. In M. Hagen, S. Verberne, C. Macdonald, C. Seifert, K. Balog, K. Nørvåg, & V. Setty (Eds.), Advances in Information Retrieval: 44th European Conference on IR Research, ECIR 2022, Stavanger, Norway, April 10–14, 2022 : proceedings (Vol. I, pp. 655–670). (Lecture Notes in Computer Science; Vol. 13185). Springer. https://doi.org/10.1007/978-3-030-99736-6_44 [details]
    • Tran, H. D., & Yates, A. (2022). Dense Retrieval with Entity Views. In CIKM '22: proceedings of the 31st ACM International Conference on Information & Knowledge Management : October 17-21, 2022, Atlanta, GA, USA (pp. 1955–1964). The Association for Computing Machinery. https://doi.org/10.1145/3511808.3557285 [details]

    2021

    • Jose, K. M., Nguyen, T., MacAvaney, S., Dalton, J., & Yates, A. (2021). DiffIR: Exploring Differences in Ranking Models' Behavior. In SIGIR '21: proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval : July 11-15, 2021, virtual event, Canada (pp. 2595-2599). Association for Computing Machinery. https://doi.org/10.1145/3404835.3462784 [details]
    • MacAvaney, S., Yates, A., Feldman, S., Downey, D., Cohan, A., & Goharian, N. (2021). Simplified Data Wrangling with ir_datasets. In SIGIR '21: proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval : July 11-15, 2021, virtual event, Canada (pp. 2429-2436). Association for Computing Machinery. https://doi.org/10.48550/arXiv.2103.02280, https://doi.org/10.1145/3404835.3463254 [details]
    • Mackie, I., Dalton, J., & Yates, A. (2021). How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset. In SIGIR '21: proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval : July 11-15, 2021, virtual event, Canada (pp. 2335–2341). Association for Computing Machinery. https://doi.org/10.1145/3404835.3463262 [details]
    • Nogueira, R., Lin, J., & Yates, A. C. (2021). Pretrained Transformers for Text Ranking: BERT and Beyond. Morgan & Claypool. https://doi.org/10.2200/S01123ED1V01Y202108HLT053
    • Tigunova, A., Mirza, P., Yates, A., & Weikum, G. (2021). PRIDE: Predicting Relationships in Conversations. In M-C. Moens, X. Huang, L. Specia, & S. W. Yih (Eds.), 2021 Conference on Empirical Methods in Natural Language Processing: EMNLP 2021 : proceedings of the conference : November 7-11, 2021 (pp. 4636–4650). The Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.emnlp-main.380 [details]
    • Zheng, Z., Hui, K., He, B., Han, X., Sun, L., & Yates, A. (2021). Contextualized query expansion via unsupervised chunk selection for text retrieval. Information Processing & Management, 58(5), Article 102672. https://doi.org/10.1016/j.ipm.2021.102672 [details]

    2023

    • Bénédict, G., Zhang, R., Metzler, D., Yates, A., Deffayet, R., Hager, P., & Jullien, S. (2023). Report on the 1st Workshop on Generative Information Retrieval (Gen-IR 2023) at SIGIR 2023. SIGIR Forum, 57(2), Article 13. https://doi.org/10.1145/3642979.3642995 [details]

    2021

    • Razniewski, S., Yates, A. C., Kassner, N., & Weikum, G. (2021). Language Models As or For Knowledge Bases. Paper presented at 4th Workshop on Deep Learning for Knowledge Graphs, DL4KG 2021, Virtual, Online. https://doi.org/10.48550/arXiv.2110.04888

    2024

    • Bleeker, M. J. R. (2024). Multi-modal learning algorithms for sequence modeling and representation learning. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
    • Deffayet, R. E. (2024). Taming the dynamics of recommender systems. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
    • Li, M. (2024). Repetition and exploration in recommendation. [Thesis, fully internal, Universiteit van Amsterdam]. [details]

    2023

    This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications. Log in to Personal Page Publication Selection tool to manage the visibility of your publications on this list.
  • Ancillary activities
    • Malt AI
      Consulting