Orzan, N., Acar, E., Grossi, D., & Rădulescu, R. (2025). Learning in public goods games: the effects of uncertainty and communication on cooperation. Neural Computing and Applications, 37(23), 18899–18932. https://doi.org/10.1007/s00521-024-10530-6[details]
Breuer, N. O., Sauter, A., Mohammadi, M., & Acar, E. (2024). CAGE: Causality-Aware Shapley Value for Global Explanations. In L. Longo, S. Lapuschkin, & C. Seifert (Eds.), Explainable Artificial Intelligence: Second World Conference, xAI 2024, Valletta, Malta, July 17–19, 2024 : proceedings (Vol. III, pp. 143–162). (Communications in Computer and Information Science; Vol. 2155). Springer. https://doi.org/10.1007/978-3-031-63800-8_8[details]
Gerdes, W., & Acar, E. (2024). Integrating Fuzzy Logic into Deep Symbolic Regression. In Workshop for Explainable AI in Finance 2024, New York
Orzan, N., Acar, E., Grossi, D., & Rădulescu, R. (2024). Learning in Public Goods Games with Non-Linear Utilities: a Multi-Objective Approach. In Proc. of the Adaptive and Learning Agents Workshop (ALA 2024)
Orzan, N., Acar, E., Grossi, D., Mannion, P., & Rădulescu, R. (2024). Learning in Multi-Objective Public Goods Games with Non-Linear Utilities. In U. Endriss, F. S. Melo, K. Bach, A. Bugarín-Diz, J. M. Alonso-Moral, S. Barro, & F. Heintz (Eds.), ECAI 2024: 27th European Conference on Artificial Intelligence, 19–24 October 2024, Santiago de Compostela, Spain : including 13th Conference on Prestigious Applications of Intelligent Systems (PAIS 2024) : proceedings (pp. 2749-2756). (Frontiers in Artificial Intelligence and Applications; Vol. 392). IOS Press. https://doi.org/10.3233/FAIA240809[details]
Orzan, N., Acar, E., Radulescu, R., & Grossi, D. (2024). Emergent Cooperation under Uncertain Incentive Alignment. In N. Alechina, V. Dignum, M. Dastani, & J. S. Sichman (Eds.), AAMAS '24: Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems : May 6-10, 2024, Auckland, New Zealand (pp. 1521-1530). International Foundation for Autonomous Agents and Multiagent Systems.
Sauter, A. W. M., Acar, E., & Plaat, A. (2024). Causal Playground: Addressing Data-Generation Requirements in Cutting-Edge Causality Research. In ArXiv
Sauter, A. W. M., Boteghi, N., Acar, E., & Plaat, A. (2024). CORE: Towards Scalable and Efficient Causal Discovery with Reinforcement Learning. In N. Alechina, V. Dignum, M. Dastani, & J. S. Sichman (Eds.), AAMAS '24: Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems : May 6-10, 2024, Auckland, New Zealand (pp. 1664-1672). International Foundation for Autonomous Agents and Multiagent Systems.
Visbeek, S., Acar, E., & den Hengst, F. (2024). Explainable Fraud Detection with Deep Symbolic Classification. In L. Longo, S. Lapuschkin, & C. Seifert (Eds.), Explainable Artificial Intelligence: Second World Conference, xAI 2024, Valletta, Malta, July 17–19, 2024 : proceedings (Vol. III, pp. 350–373). (Communications in Computer and Information Science; Vol. 2155). Springer. https://doi.org/10.1007/978-3-031-63800-8_18[details]
Wolfson, B., & Acar, E. (2024). Differentiable Inductive Logic Programming for Fraud Detection. In Workshop for Explainable AI in Finance 2024, New York
2023
Orzan, N., Acar, E., Grossi, D., & Rădulescu, R. (2023). Emergent Cooperation and Deception in Public Good Games. In Proc. of the Adaptive and Learning Agents Workshop (ALA 2023)
Sauter, A., Acar, E., & François-Lavet, V. (2023). A Meta-Reinforcement Learning Algorithm for Causal Discovery. Proceedings of Machine Learning Research, 213, 602-619. https://doi.org/10.48550/arXiv.2207.08457[details]
Feng, R., Acar, E., Wang, Y., Schlobach, S., Liu, W., & Ding, W. (2022). Computing Sufficient and Necessary Conditions in CTL: A Forgetting Approach. Information Sciences, 616, 474-504. https://doi.org/10.1016/j.ins.2022.10.124[details]
GhadimiAtigh, M., Schoep, J., Acar, E., van Noord, N., & Mettes, P. (2022). Hyperbolic Image Segmentation. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition: New Orleans, Louisiana, 19-24 June 2022 : proceedings (pp. 4443-4452). (CVPR). IEEE Computer Society. https://doi.org/10.1109/CVPR52688.2022.00441[details]
Ho, L., Acar, E., Arch-int, , S., Schlobach, K. S., & Arch-int, N. (2022). An argumentative approach for handling inconsistency in prioritized Datalog± ontologies. AI Communications.
Verma, M., & Acar, E. (2022). Learning to Cooperate with Human Evaluative Feedback and Demonstrations. In S. Schlobach, M. Pérez-Ortiz, & M. Tielman (Eds.), HHAI2022: Augmenting Human Intellect: Proceedings of the 1st International Conference on Hybrid Human-Artificial Intelligence (pp. 46-59). (Frontiers in Artificial Intelligence and Applications; Vol. 354). IOS Press. https://doi.org/10.3233/FAIA220189
van Krieken, E., Acar, E., & van Harmelen, F. (2022). Analyzing Differentiable Fuzzy Logic Operators. Artificial Intelligence, 302, Article 103602. https://doi.org/10.1016/j.artint.2021.103602
2024
Azarm, C., Acar, E., & van Zeelt, M. (2024). On the Potential of Network-Based Features for Fraud Detection. (v1 ed.) ArXiv. https://doi.org/10.48550/arXiv.2402.09495
van Sprang, A. V., Zuidema, W. H., & Acar, E. (2024). Enforcing Interpretability in Time Series Transformers: A Concept Bottleneck Framework. Manuscript submitted for publication. In Enforcing Interpretability in Time Series Transformers: A Concept Bottleneck Framework
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.