Voor de beste ervaring schakelt u JavaScript in en gebruikt u een moderne browser!
Je gebruikt een niet-ondersteunde browser. Deze site kan er anders uitzien dan je verwacht.

Dr. rer. nat. E. (Erman) Acar

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Informatics Institute

Bezoekadres
  • Science Park 900
Postadres
  • Postbus 94323
    1090 GH Amsterdam
  • Publicaties

    2025

    2024

    • Breuer, N. O., Sauter, A., Mohammadi, M., & Acar, E. (2024). CAGE: Causality-Aware Shapley Value for Global Explanations. In L. Longo, S. Lapuschkin, & C. Seifert (Eds.), Explainable Artificial Intelligence: Second World Conference, xAI 2024, Valletta, Malta, July 17–19, 2024 : proceedings (Vol. III, pp. 143–162). (Communications in Computer and Information Science; Vol. 2155). Springer. https://doi.org/10.1007/978-3-031-63800-8_8 [details]
    • Gerdes, W., & Acar, E. (2024). Integrating Fuzzy Logic into Deep Symbolic Regression. In Workshop for Explainable AI in Finance 2024, New York
    • Orzan, N., Acar, E., Grossi, D., & Rădulescu, R. (2024). Learning in Public Goods Games with Non-Linear Utilities: a Multi-Objective Approach. In Proc. of the Adaptive and Learning Agents Workshop (ALA 2024)
    • Orzan, N., Acar, E., Grossi, D., Mannion, P., & Rădulescu, R. (2024). Learning in Multi-Objective Public Goods Games with Non-Linear Utilities. In U. Endriss, F. S. Melo, K. Bach, A. Bugarín-Diz, J. M. Alonso-Moral, S. Barro, & F. Heintz (Eds.), ECAI 2024: 27th European Conference on Artificial Intelligence, 19–24 October 2024, Santiago de Compostela, Spain : including 13th Conference on Prestigious Applications of Intelligent Systems (PAIS 2024) : proceedings (pp. 2749-2756). (Frontiers in Artificial Intelligence and Applications; Vol. 392). IOS Press. https://doi.org/10.3233/FAIA240809 [details]
    • Orzan, N., Acar, E., Radulescu, R., & Grossi, D. (2024). Emergent Cooperation under Uncertain Incentive Alignment. In N. Alechina, V. Dignum, M. Dastani, & J. S. Sichman (Eds.), AAMAS '24: Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems : May 6-10, 2024, Auckland, New Zealand (pp. 1521-1530). International Foundation for Autonomous Agents and Multiagent Systems.
    • Sauter, A. W. M., Acar, E., & Plaat, A. (2024). Causal Playground: Addressing Data-Generation Requirements in Cutting-Edge Causality Research. In ArXiv
    • Sauter, A. W. M., Boteghi, N., Acar, E., & Plaat, A. (2024). CORE: Towards Scalable and Efficient Causal Discovery with Reinforcement Learning. In N. Alechina, V. Dignum, M. Dastani, & J. S. Sichman (Eds.), AAMAS '24: Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems : May 6-10, 2024, Auckland, New Zealand (pp. 1664-1672). International Foundation for Autonomous Agents and Multiagent Systems.
    • Visbeek, S., Acar, E., & den Hengst, F. (2024). Explainable Fraud Detection with Deep Symbolic Classification. In L. Longo, S. Lapuschkin, & C. Seifert (Eds.), Explainable Artificial Intelligence: Second World Conference, xAI 2024, Valletta, Malta, July 17–19, 2024 : proceedings (Vol. III, pp. 350–373). (Communications in Computer and Information Science; Vol. 2155). Springer. https://doi.org/10.1007/978-3-031-63800-8_18 [details]
    • Wolfson, B., & Acar, E. (2024). Differentiable Inductive Logic Programming for Fraud Detection. In Workshop for Explainable AI in Finance 2024, New York

    2023

    • Orzan, N., Acar, E., Grossi, D., & Rădulescu, R. (2023). Emergent Cooperation and Deception in Public Good Games. In Proc. of the Adaptive and Learning Agents Workshop (ALA 2023)
    • Sauter, A., Acar, E., & François-Lavet, V. (2023). A Meta-Reinforcement Learning Algorithm for Causal Discovery. Proceedings of Machine Learning Research, 213, 602-619. https://doi.org/10.48550/arXiv.2207.08457 [details]

    2022

    2024

    • Azarm, C., Acar, E., & van Zeelt, M. (2024). On the Potential of Network-Based Features for Fraud Detection. (v1 ed.) ArXiv. https://doi.org/10.48550/arXiv.2402.09495
    • van Sprang, A. V., Zuidema, W. H., & Acar, E. (2024). Enforcing Interpretability in Time Series Transformers: A Concept Bottleneck Framework. Manuscript submitted for publication. In Enforcing Interpretability in Time Series Transformers: A Concept Bottleneck Framework
    This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications. Log in to Personal Page Publication Selection tool to manage the visibility of your publications on this list.
  • Nevenwerkzaamheden
    Geen nevenwerkzaamheden