For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.

Dr. rer. nat. E. (Erman) Acar

Faculty of Science
Informatics Institute

Visiting address
  • Science Park 900
Postal address
  • Postbus 94323
    1090 GH Amsterdam
  • Publications

    2025

    2024

    • Breuer, N. O., Sauter, A., Mohammadi, M., & Acar, E. (2024). CAGE: Causality-Aware Shapley Value for Global Explanations. In L. Longo, S. Lapuschkin, & C. Seifert (Eds.), Explainable Artificial Intelligence: Second World Conference, xAI 2024, Valletta, Malta, July 17–19, 2024 : proceedings (Vol. III, pp. 143–162). (Communications in Computer and Information Science; Vol. 2155). Springer. https://doi.org/10.1007/978-3-031-63800-8_8 [details]
    • Gerdes, W., & Acar, E. (2024). Integrating Fuzzy Logic into Deep Symbolic Regression. In Workshop for Explainable AI in Finance 2024, New York
    • Orzan, N., Acar, E., Grossi, D., & Rădulescu, R. (2024). Learning in Public Goods Games with Non-Linear Utilities: a Multi-Objective Approach. In Proc. of the Adaptive and Learning Agents Workshop (ALA 2024)
    • Orzan, N., Acar, E., Grossi, D., Mannion, P., & Rădulescu, R. (2024). Learning in Multi-Objective Public Goods Games with Non-Linear Utilities. In U. Endriss, F. S. Melo, K. Bach, A. Bugarín-Diz, J. M. Alonso-Moral, S. Barro, & F. Heintz (Eds.), ECAI 2024: 27th European Conference on Artificial Intelligence, 19–24 October 2024, Santiago de Compostela, Spain : including 13th Conference on Prestigious Applications of Intelligent Systems (PAIS 2024) : proceedings (pp. 2749-2756). (Frontiers in Artificial Intelligence and Applications; Vol. 392). IOS Press. https://doi.org/10.3233/FAIA240809 [details]
    • Orzan, N., Acar, E., Radulescu, R., & Grossi, D. (2024). Emergent Cooperation under Uncertain Incentive Alignment. In N. Alechina, V. Dignum, M. Dastani, & J. S. Sichman (Eds.), AAMAS '24: Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems : May 6-10, 2024, Auckland, New Zealand (pp. 1521-1530). International Foundation for Autonomous Agents and Multiagent Systems.
    • Sauter, A. W. M., Acar, E., & Plaat, A. (2024). Causal Playground: Addressing Data-Generation Requirements in Cutting-Edge Causality Research. In ArXiv
    • Sauter, A. W. M., Boteghi, N., Acar, E., & Plaat, A. (2024). CORE: Towards Scalable and Efficient Causal Discovery with Reinforcement Learning. In N. Alechina, V. Dignum, M. Dastani, & J. S. Sichman (Eds.), AAMAS '24: Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems : May 6-10, 2024, Auckland, New Zealand (pp. 1664-1672). International Foundation for Autonomous Agents and Multiagent Systems.
    • Visbeek, S., Acar, E., & den Hengst, F. (2024). Explainable Fraud Detection with Deep Symbolic Classification. In L. Longo, S. Lapuschkin, & C. Seifert (Eds.), Explainable Artificial Intelligence: Second World Conference, xAI 2024, Valletta, Malta, July 17–19, 2024 : proceedings (Vol. III, pp. 350–373). (Communications in Computer and Information Science; Vol. 2155). Springer. https://doi.org/10.1007/978-3-031-63800-8_18 [details]
    • Wolfson, B., & Acar, E. (2024). Differentiable Inductive Logic Programming for Fraud Detection. In Workshop for Explainable AI in Finance 2024, New York

    2023

    • Orzan, N., Acar, E., Grossi, D., & Rădulescu, R. (2023). Emergent Cooperation and Deception in Public Good Games. In Proc. of the Adaptive and Learning Agents Workshop (ALA 2023)
    • Sauter, A., Acar, E., & François-Lavet, V. (2023). A Meta-Reinforcement Learning Algorithm for Causal Discovery. Proceedings of Machine Learning Research, 213, 602-619. https://doi.org/10.48550/arXiv.2207.08457 [details]

    2022

    2024

    • Azarm, C., Acar, E., & van Zeelt, M. (2024). On the Potential of Network-Based Features for Fraud Detection. (v1 ed.) ArXiv. https://doi.org/10.48550/arXiv.2402.09495
    • van Sprang, A. V., Zuidema, W. H., & Acar, E. (2024). Enforcing Interpretability in Time Series Transformers: A Concept Bottleneck Framework. Manuscript submitted for publication. In Enforcing Interpretability in Time Series Transformers: A Concept Bottleneck Framework
    This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications. Log in to Personal Page Publication Selection tool to manage the visibility of your publications on this list.
  • Ancillary activities
    No ancillary activities