Lippe, P., Ren, P., Haned, H., Voorn, B., & de Rijke, M. (2022). Simultaneously Improving Utility and User Experience in Task-oriented Dialogue Systems. In eCom 2022: The SIGIR 2022 SIGIR Workshop on eCommerce ACM. https://sigir-ecom.github.io/ecom22Papers/paper_5042.pdf
Wilms, M., Sileno, G., & Haned, H. (2022). PEBAM: A Profile-Based Evaluation Method for Bias Assessment on Mixed Datasets. In R. Bergmann, L. Malburg, S. C. Rodermund, & I. J. Timm (Eds.), KI 2022: Advances in Artificial Intelligence: 45th German Conference on AI, Trier, Germany, September 19–23, 2022 : proceedings (pp. 209-223). (Lecture Notes in Computer Science; Vol. 13404), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-031-15791-2_17[details]
Lucic, A., Haned, H., & de Rijke, M. (2020). Why Does My Model Fail? Contrastive Local Explanations for Retail Forecasting. In FAT* '20: proceedings of the 2020 Conference on Fairness, Accountability, and Transparency : January 27-30, 2020, Barcelona, Spain (pp. 90-98). The Association for Computing Machinery. https://doi.org/10.1145/3351095.3372824[details]
2019
Olteanu, A., Garcia-Gathright, J., de Rijke, M., Ekstrand, M. D., Roegiest, A., Lipani, A., Beutel, A., Lucic, A., Stoica, A-A., Das, A., Biega, A., Voorn, B., Hauff, C., Spina, D., Lewis, D., Oard, D. W., Yilmaz, E., Hasibi, F., Kazai, G., ... Kamishima, T. (2019). FACTS-IR: Fairness, Accountability, Confidentiality, Transparency, and Safety in Information Retrieval. SIGIR Forum, 53(2), 20-43. http://sigir.org/wp-content/uploads/2019/december/p020.pdf[details]
Lucic, A., Haned, H., & de Rijke, M. (2019). Contrastive Explanations for Large Errors in Retail Forecasting Predictions through Monte Carlo Simulations. In T. Miller, R. Weber, & D. Magazzeni (Eds.), Proceedings of the IJCAI 2019 Workshop on Explainable Artificial Intelligence (pp. 66-72). IJCAI. https://arxiv.org/abs/1908.00085v1[details]
Lucic, A., Haned, H., & de Rijke, M. (2019). Explaining Predictions from Tree-based Boosting Ensembles. In Proceedings of FACTS-IR 2019 ArXiv. https://arxiv.org/abs/1907.02582[details]
Lucic, A., Oosterhuis, H., Haned, H., & de Rijke, M. (2022). FOCUS: Flexible Optimizable Counterfactual Explanations for Tree Ensembles. Poster session presented at 36th AAAI Conference on Artificial Intelligence (AAAI-2022). https://doi.org/10.48550/arXiv.1911.12199
2022
Lucic, A. (2022). Explaining predictions from machine learning models: algorithms, users, and pedagogy. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Lucic, A., Oosterhuis, H., Haned, H., & de Rijke, M. (2019). Actionable Interpretability through Optimizable Counterfactual Explanations for Tree Ensembles. (v1 ed.) ArXiv. [details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteer alle cookies’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Lees ook het UvA Privacy statement.