Qi, W., Jonker, M. J., Katsavelis, D., de Leeuw, W., Wortel, M., & Ter Kuile, B. H. (2024). The Effect of the Stringent Response and Oxidative Stress Response on Fitness Costs of De Novo Acquisition of Antibiotic Resistance. International Journal of Molecular Sciences, 25(5). https://doi.org/10.3390/ijms25052582
Qi, W., Jonker, M. J., de Leeuw, W., Brul, S., & Ter Kuile, B. H. (2024). Role of RelA-synthesized (p)ppGpp and ROS-induced mutagenesis in de novo acquisition of antibiotic resistance in E. coli. iScience, 27(4), 109579. https://doi.org/10.1016/j.isci.2024.109579
2023
Breit, T. M., Leeuw, W. D., van Olst, M., Ensink, W. A., van Leeuwen, S., Jonker, M. J., & Dekker, R. J. (2023). Genome sequences of 10 new carnation mottle virus variants. Microbiology Resource Announcements, 12(9). https://doi.org/10.1128/MRA.00189-23[details]
Breit, T. M., de Leeuw, W. C., van Olst, M., Ensink, W. A., van Leeuwen, S., & Dekker, R. J. (2023). Genome Sequence of a New Carnation Small Viroid-Like RNA, CarSV-1. Microbiology Resource Announcements, 12(3), Article e01219-22. https://doi.org/10.1128/mra.01219-22[details]
Qi, W., Jonker, M. J., de Leeuw, W., Brul, S., & ter Kuile, B. H. (2023). Reactive oxygen species accelerate de novo acquisition of antibiotic resistance in E. coli. iScience, 26(12), Article 108373. https://doi.org/10.1016/j.isci.2023.108373[details]
Rauwerda, H., Pagano, J. F. B., de Leeuw, W. C., Ensink, W., Nehrdich, U., de Jong, M., Jonker, M., Spaink, H. P., & Breit, T. M. (2017). Transcriptome dynamics in early zebrafish embryogenesis determined by high-resolution time course analysis of 180 successive, individual zebrafish embryos. BMC Genomics, 18, Article 287. https://doi.org/10.1186/s12864-017-3672-z[details]
Rauwerda, H., Pagano, J. F. B., Ensink, W., Nehrdich, U., Spaink, H. P., Breit, T. M., de Leeuw, W. C., de Jong, M. & Jonker, M. (2017). Additional file 7: of Transcriptome dynamics in early zebrafish embryogenesis determined by high-resolution time course analysis of 180 successive, individual zebrafish embryos. Figshare. https://doi.org/10.6084/m9.figshare.c.3740003_d16.v1
Rauwerda, H., Pagano, J. F. B., Nehrdich, U., Spaink, H. P., Breit, T. M., de Leeuw, W. C., de Jong, M. & Jonker, M. (2017). Additional file 4: of Transcriptome dynamics in early zebrafish embryogenesis determined by high-resolution time course analysis of 180 successive, individual zebrafish embryos. Figshare. https://doi.org/10.6084/m9.figshare.c.3740003_d13.v1
Rauwerda, H., Pagano, J. F. B., Ensink, W., Nehrdich, U., Spaink, H. P., Breit, T. M., de Leeuw, W. C., de Jong, H. M. & Jonker, M. (2017). Additional file 3: of Transcriptome dynamics in early zebrafish embryogenesis determined by high-resolution time course analysis of 180 successive, individual zebrafish embryos. Figshare. https://doi.org/10.6084/m9.figshare.c.3740003_d12.v1
Rauwerda, H., Pagano, J. F. B., Ensink, W., Nehrdich, U., Spaink, H. P., Breit, T. M., de Leeuw, W. C., de Jong, M. & Jonker, M. (2017). Additional file 1: of Transcriptome dynamics in early zebrafish embryogenesis determined by high-resolution time course analysis of 180 successive, individual zebrafish embryos. Figshare. https://doi.org/10.6084/m9.figshare.c.3740003_d10.v1
van Hagen, M., Piebes, D. G. E., de Leeuw, W. C., Vuist, I. M., van Roon-Mom, W. M. C., Moerland, P. D., & Verschure, P. J. (2017). The dynamics of early-state transcriptional changes and aggregate formation in a Huntington's disease cell model. BMC Genomics, 18(373), Article 373. https://doi.org/10.1186/s12864-017-3745-z[details]
van Hagen, M., de Leeuw, W. C., van Roon-Mom, W. M. C., Verschure, P. J., Piebes, D., Vuist, I. & Moerland, P. D. (2017). Additional file 6: of The dynamics of early-state transcriptional changes and aggregate formation in a Huntington’s disease cell model. Figshare. https://doi.org/10.6084/m9.figshare.c.3778547_d6.v1
van Hagen, M., de Leeuw, W. C., van Roon-Mom, W. M. C., Verschure, P. J., Piebes, D., Vuist, I. & Moerland, P. D. (2017). Additional file 5: of The dynamics of early-state transcriptional changes and aggregate formation in a Huntington’s disease cell model. Figshare. https://doi.org/10.6084/m9.figshare.c.3778547_d5.v1
van Hagen, M., de Leeuw, W. C., van Roon-Mom, W. M. C., Verschure, P. J., Piebes, D., Vuist, I. & Moerland, P. (2017). Additional file 4: of The dynamics of early-state transcriptional changes and aggregate formation in a Huntington’s disease cell model. Figshare. https://doi.org/10.6084/m9.figshare.c.3778547_d4.v1
van Hagen, M., de Leeuw, W. C., van Roon-Mom, W. M. C., Verschure, P. J., Piebes, D., Vuist, I. & Moerland, P. D. (2017). Additional file 2: of The dynamics of early-state transcriptional changes and aggregate formation in a Huntington's disease cell model. Figshare. https://doi.org/10.6084/m9.figshare.c.3778547_d2.v1
van Hagen, M., de Leeuw, W. C., van Roon-Mom, W. M. C., Verschure, P. J., Piebes, D., Vuist, I. & Moerland, P. D. (2017). Additional file 6: of The dynamics of early-state transcriptional changes and aggregate formation in a Huntington’s disease cell model. Figshare. https://doi.org/10.6084/m9.figshare.c.3778547_d6.v1
van Hagen, M., de Leeuw, W. C., van Roon-Mom, W. M. C., Verschure, P. J., Piebes, D., Vuist, I. & Moerland, P. D. (2017). Additional file 5: of The dynamics of early-state transcriptional changes and aggregate formation in a Huntington’s disease cell model. Figshare. https://doi.org/10.6084/m9.figshare.c.3778547_d5.v1
van Hagen, M., de Leeuw, W. C., van Roon-Mom, W. M. C., Verschure, P. J., Piebes, D., Vuist, I. & Moerland, P. (2017). Additional file 4: of The dynamics of early-state transcriptional changes and aggregate formation in a Huntington’s disease cell model. Figshare. https://doi.org/10.6084/m9.figshare.c.3778547_d4.v1
van Hagen, M., de Leeuw, W. C., van Roon-Mom, W. M. C., Verschure, P. J., Piebes, D., Vuist, I. & Moerland, P. D. (2017). Additional file 2: of The dynamics of early-state transcriptional changes and aggregate formation in a Huntington's disease cell model. Figshare. https://doi.org/10.6084/m9.figshare.c.3778547_d2.v1
2016
Pagano, J. F. B., Rauwerda, H., de Leeuw, W. C., Wackers, P., de Jong, M., Ensink, W., Dekker, R., Nehrdich, U., Spaink, H. P., Jonker, M., & Breit, T. M. (2016). Transcriptome data on maternal RNA of 24 individual zebrafish eggs from five sibling mothers. Data in Brief, 8, 69-72. Advance online publication. https://doi.org/10.1016/j.dib.2016.04.045[details]
Bruning, O., Rauwerda, H., Dekker, R. J., de Leeuw, W. C., Wackers, P. F. K., Ensink, W. A., Jonker, M. J., & Breit, T. M. (2015). Valuable lessons-learned in transcriptomics experimentation. Transcription, 6(3), 51-55. https://doi.org/10.1080/21541264.2015.1064195[details]
Locati, M. D., Terpstra, I., de Leeuw, W. C., Kuzak, M., Rauwerda, H., Ensink, W. A., van Leeuwen, S., Nehrdich, U., Spaink, H. P., Jonker, M. J., Breit, T. M., & Dekker, R. J. (2015). Improving small RNA-seq by using a synthetic spike-in set for size-range quality control together with a set for data normalization. Nucleic Acids Research, 43(14), Article e89. Advance online publication. https://doi.org/10.1093/nar/gkv303[details]
Marinković, M., de Leeuw, W. C., Ensink, W. A., de Jong, M., Breit, T. M., Admiraal, W., Kraak, M. H. S., & Jonker, M. J. (2012). Gene expression patterns and life cycle responses of toxicant-exposed chironomids. Environmental Science and Technology, 46(22), 12679-12686. https://doi.org/10.1021/es3033617[details]
Marinković, M., de Leeuw, W. C., de Jong, M., Kraak, M. H. S., Admiraal, W., Breit, T. M., & Jonker, M. J. (2012). Combining next-generation sequencing and microarray technology into a transcriptomics approach for the non-model organism Chironomus riparius. PLoS ONE, 7(10), e48096. https://doi.org/10.1371/journal.pone.0048096[details]
Rauwerda, H., de Jong, M., de Leeuw, W. C., Spaink, H. P., & Breit, T. M. (2010). Integrating heterogeneous sequence information for transcriptome-wide microarray design; a Zebrafish example. BMC Research Notes, 3, 192. https://doi.org/10.1186/1756-0500-3-192[details]
de Leeuw, W. C., Rauwerda, H., Inda, M. A., Bruning, O., & Breit, T. M. (2009). SigWinR; the SigWin-detector updated and ported to R. BMC Research Notes, 2(1), Article 205. https://doi.org/10.1186/1756-0500-2-205[details]
de Leeuw, W. C., Rauwerda, H., Jonker, M. J., & Breit, T. M. (2008). Salvaging Affymetrix probes after probe-level re-annotation. BMC Research Notes, 1, Article 66. https://doi.org/10.1186/1756-0500-1-66[details]
Rauwerda, H., de Leeuw, W. C., Adriaanse, J., Bouwhuis, M., van der Vet, P., & Breit, T. M. (2007). The role of e-BioLabs in a life sciences collaborative working environment. In Proceedings Conference e-Challenges [details]
2003
Manders, E. M. M., Visser, A. E., Koppen, A., de Leeuw, W. C., van Liere, R., Brakenhoff, G. J., & van Driel, R. (2003). Four-dimensional imaging of chromatin dynamics during the assembly of the interphase nucleus. Chromosome Research, 11, 537-547. https://doi.org/10.1023/A:1024995215340[details]
2022
Rauwerda, H., Pagano, J. F. B., de Leeuw, W. C., Ensink, W., van Olst, M., Nehrdich, U., Jonker, M. J., Spaink, H. P., & Breit, T. M. (2022). Cellular Factors Involved in Transcriptome Dynamics in Early Zebrafish Embryogenesis. (v1 ed.) BioRxiv. https://doi.org/10.1101/2022.09.29.510050[details]
Pagano, J. F. B., Locati, M. D., Ensink, W. A., van Olst, M., van Leeuwen, S., de Leeuw, W. C., Nehrdich, U., Spaink, H. P., Rauwerda, H., Jonker, M. J., Dekker, R. J., & Breit, T. M. (2020). Maternal- and Somatic-type snoRNA Expression and Processing in Zebrafish Development. (v3 ed.) BioRxiv. https://doi.org/10.1101/858936[details]
Breit, T. M., Pagano, J. F. B., van der Jagt, P. L., Mittring, E., Ensink, W. A., van Olst, M., van Leeuwen, S., de Leeuw, W., Nehrdich, U., Spaink, H. P., Rauwerda, H., & Dekker, R. J. (2019). New observations on non-coding RNAs involved in the dual translation system in zebrafish development. (v2 ed.) BioRxiv. https://doi.org/10.1101/869651[details]
Pagano, J. F. B., Dekker, R. J., Ensink, W. A., van Olst, M., Bos, A., van Leeuwen, S., de Leeuw, W. C., Nehrdich, U., Spaink, H. P., Rauwerda, H., Jonker, M. J., & Breit, T. M. (2019). An alternative spliceosome defined by distinct snRNAs in early zebrafish embryogenesis. (v1 ed.) BioRxiv. https://doi.org/10.1101/858944[details]
Jonker, M. J., de Leeuw, W. C., Marinković, M., Wittink, F. R. A., Rauwerda, H., Bruning, O., Ensink, W. A., Fluit, A. C., Boel, C. H., de Jong, M., & Breit, T. M. (2014). Absence/presence calling in microarray-based CGH experiments with non-model organisms. Nucleic Acids Research, 42(11), e94. https://doi.org/10.1093/nar/gku343[details]
Marinkovic, M., de Leeuw, W. C., de Jong, M., Admiraal, W., Breit, T. M., Kraak, M. H. S., & Jonker, M. J. (2012). Sequencing the Chironomus riparius transcriptome to compare the sensitivity of gene expression and life-cycle endpoints to toxicant exposure.. Abstract from 6th SETAC World Congress/SETAC Europe 22nd Annual Meeting, Berlin, Germany, May 2012. http://berlin.setac.eu/embed/Berlin/ET_extended_abstracts_Part1.pdf
2017
van Hagen, M., de Leeuw, W. C., van Roon-Mom, W. M. C., Verschure, P. J., Piebes, D., Vuist, I. & Moerland, P. D. (2017). Additional file 5: of The dynamics of early-state transcriptional changes and aggregate formation in a Huntington’s disease cell model. Figshare. https://doi.org/10.6084/m9.figshare.c.3778547_d5.v1
van Hagen, M., de Leeuw, W. C., van Roon-Mom, W. M. C., Verschure, P. J., Piebes, D., Vuist, I. & Moerland, P. D. (2017). Additional file 2: of The dynamics of early-state transcriptional changes and aggregate formation in a Huntington's disease cell model. Figshare. https://doi.org/10.6084/m9.figshare.c.3778547_d2.v1
Rauwerda, H., Pagano, J. F. B., Nehrdich, U., Spaink, H. P., Breit, T. M., de Leeuw, W. C., de Jong, M. & Jonker, M. (2017). Additional file 4: of Transcriptome dynamics in early zebrafish embryogenesis determined by high-resolution time course analysis of 180 successive, individual zebrafish embryos. Figshare. https://doi.org/10.6084/m9.figshare.c.3740003_d13.v1
van Hagen, M., de Leeuw, W. C., van Roon-Mom, W. M. C., Verschure, P. J., Piebes, D., Vuist, I. & Moerland, P. D. (2017). Additional file 6: of The dynamics of early-state transcriptional changes and aggregate formation in a Huntington’s disease cell model. Figshare. https://doi.org/10.6084/m9.figshare.c.3778547_d6.v1
van Hagen, M., de Leeuw, W. C., van Roon-Mom, W. M. C., Verschure, P. J., Piebes, D., Vuist, I. & Moerland, P. (2017). Additional file 4: of The dynamics of early-state transcriptional changes and aggregate formation in a Huntington’s disease cell model. Figshare. https://doi.org/10.6084/m9.figshare.c.3778547_d4.v1
Rauwerda, H., Pagano, J. F. B., Ensink, W., Nehrdich, U., Spaink, H. P., Breit, T. M., de Leeuw, W. C., de Jong, M. & Jonker, M. (2017). Additional file 7: of Transcriptome dynamics in early zebrafish embryogenesis determined by high-resolution time course analysis of 180 successive, individual zebrafish embryos. Figshare. https://doi.org/10.6084/m9.figshare.c.3740003_d16.v1
Rauwerda, H., Pagano, J. F. B., Ensink, W., Nehrdich, U., Spaink, H. P., Breit, T. M., de Leeuw, W. C., de Jong, H. M. & Jonker, M. (2017). Additional file 3: of Transcriptome dynamics in early zebrafish embryogenesis determined by high-resolution time course analysis of 180 successive, individual zebrafish embryos. Figshare. https://doi.org/10.6084/m9.figshare.c.3740003_d12.v1
Rauwerda, H., Pagano, J. F. B., Ensink, W., Nehrdich, U., Spaink, H. P., Breit, T. M., de Leeuw, W. C., de Jong, M. & Jonker, M. (2017). Additional file 1: of Transcriptome dynamics in early zebrafish embryogenesis determined by high-resolution time course analysis of 180 successive, individual zebrafish embryos. Figshare. https://doi.org/10.6084/m9.figshare.c.3740003_d10.v1
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.