Bouwens, T., Bakker, T. M. A., Zhu, K., Huijser, A., Mathew, S., & Reek, J. N. H. (2024). Rotaxane-Functionalized Dyes for Charge-Rectification in p-Type Photoelectrochemical Devices. Advanced Science, 11(9), Article 2306032. https://doi.org/10.1002/advs.202306032[details]
Bruggeman, D. F., Detz, R. J., Mathew, S., & Reek, J. N. H. (2024). Increased solar-driven chemical transformations through surface-induced benzoperylene aggregation in dye-sensitized photoanodes. Photochemical and Photobiological Sciences, 23(3), 503-516. https://doi.org/10.1007/s43630-024-00534-5[details]
Epping, R. F. J., de Zwart, F. J., van Leest, N. P., van der Vlugt, J. I., Siegler, M. A., Mathew, S., Reek, J. N. H., & de Bruin, B. (2024). PhenTAA: A Redox-Active N4-Macrocyclic Ligand Featuring Donor and Acceptor Moieties. Inorganic Chemistry, 63(4), 1974-1987. https://doi.org/10.1021/acs.inorgchem.3c03708[details]
Evrard, Q., Sadegh, N., Mathew, S., Zuidinga, E., Watts, B., Paradiz Dominguez, M., Giglia, A., Mahne, N., Nannarone, S., Nishimura, A., Goya, T., Sugioka, T., Vockenhuber, M., Ekinci, Y., & Brouwer, A. M. (2024). Extreme Ultraviolet Photoresponse of Organotin-Based Photoresists with Borate Counteranions. ACS Applied Materials and Interfaces. https://doi.org/10.1021/acsami.4c08636
Evrard, Q., Sadegh, N., Mathew, S., Zuidinga, E., Watts, B., Paradiz Dominguez, M., Giglia, A., Mahne, N., Nannarone, S., Nishimura, A., Goya, T., Sugioka, T., Vockenhuber, M., Ekinci, Y. & Brouwer, A. M. (2024). CCDC 2332946: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2j9mbt
Sukowski, V., van Borselen, M., Mathew, S., de Bruin, B. & Fernández-Ibáñez, M. . (2023). CCDC 2262950: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2fysdl
Sukowski, V., van Borselen, M., Mathew, S., de Bruin, B. & Fernández-Ibáñez, M. . (2023). CCDC 2262951: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2fysfm
Sukowski, V., van Borselen, M., Mathew, S., de Bruin, B., & Fernández-Ibáñez, M. Á. (2024). Meta-C-H arylation of aniline derivatives via palladium/S,O-ligand/norbornene cooperative catalysis. Angewandte Chemie - International Edition, 63(5), Article e202317741. https://doi.org/10.1002/anie.202317741, https://doi.org/10.1002/ange.202317741[details]
Sukowski, V., van Borselen, M., Mathew, S., de Bruin, B. & Fernández-Ibáñez, M. . (2023). CCDC 2262950: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2fysdl
Sukowski, V., van Borselen, M., Mathew, S., de Bruin, B. & Fernández-Ibáñez, M. . (2023). CCDC 2262951: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2fysfm
van Leeuwen, N. S., Mathew, S., van Lare, C. E. J., Ahr, M. P., Zwijnenburg, A., Pullen, S., & de Bruin, B. (2024). Atom Transfer Radical Addition of Activated Primary Alkyl Chlorides Using In Situ Generated [Cp*RuII(Cl)(PR3)] Catalysts. ChemCatChem, 16(9), Article e202301407. https://doi.org/10.1002/cctc.202301407[details]
Antony, L. S. D., van Dongen, S., Grimaldi, G., Mathew, S., Helmbrecht, L., van der Weijden, A., Borchert, J., Schuringa, I., Ehrler, B., Noorduin, W. L., & Alarcon-Llado, E. (2023). The role of Pb oxidation state of the precursor in the formation of 2D perovskite microplates. Nanoscale, 15(13), 6285-6294. https://doi.org/10.1039/d2nr06509f[details]
Bobylev, E. O., Knol, R. A., Mathew, S., Poole, III, D. A., Kotsogianni, I., Martin, N. I., de Bruin, B., Kros, A., & Reek, J. N. H. (2023). In vivo biodistribution of kinetically stable Pt2L4 nanospheres that show anti-cancer activity. Chemical Science, 14(25), 6943-6952. https://doi.org/10.1039/d3sc01086d[details]
Bobylev, O., Knol, R. A., Mathew, S., Kotsogianni, I., Martin, N. I., de Bruin, B., Kros, A., Reek, J. N. H. & Poole III, D. (2023). CCDC 2216167: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2dd386
Bobylev, E. O., Passerini, L., de Zwart, F. J., Poole, III, D. A., Mathew, S., Huber, M., de Bruin, B., & Reek, J. N. H. (2023). Pd12MnL24 (for n = 6, 8, 12) nanospheres by post-assembly modification of Pd12L24 spheres. Chemical Science, 14(42), 11840-11849. https://doi.org/10.1039/d3sc03745b[details]
Bobylev, O., Ruijter, J., Poole, D. A., Mathew, S., de Bruin, B. & Reek, J. N. H. (2023). CCDC 2189698: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2chkfw
Bouwens, T., Bakker, T. M. A., Zhu, K., Hasenack, J., Dieperink, M., Brouwer, A. M., Huijser, A., Mathew, S., & Reek, J. N. H. (2023). Using supramolecular machinery to engineer directional charge propagation in photoelectrochemical devices. Nature Chemistry, 15(2), 213-221. https://doi.org/10.1038/s41557-022-01068-y[details]
Bouwens, T., Bakker, T., Hasenack, J., Dieperink, M., Brouwer, F., Huijser, A., Mathew, S. & Reek, J. N. H. (2022). Using supramolecular machinery to engineer directional charge propagation in photoelectrochemical devices. Figshare. https://doi.org/10.6084/m9.figshare.20508852.v1
Helling, C., van der Zee, L. J. C., Hofman, J., de Zwart, F. J., Mathew, S., Nieger, M., & Slootweg, J. C. (2023). Homolytic C−H Bond Activation by Phosphine−Quinone-Based Radical Ion Pairs. Angewandte Chemie - International Edition, 62(48), Article e202313397. https://doi.org/10.1002/anie.202313397[details]
Helling, C., van der Zee, L., Hofman, J., de Zwart, F., Mathew, S., Nieger, M. & Slootweg, J. . (2023). CCDC 2265211: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2g14b0
Helling, C., van der Zee, L., Hofman, J., de Zwart, F., Mathew, S., Nieger, M. & Slootweg, J. . (2023). CCDC 2265212: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2g14c1
Helling, C., van der Zee, L., Hofman, J., de Zwart, F., Mathew, S., Nieger, M. & Slootweg, J. . (2023). CCDC 2265213: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2g14d2
Helling, C., van der Zee, L., Hofman, J., de Zwart, F., Mathew, S., Nieger, M. & Slootweg, J. . (2023). CCDC 2265214: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2g14f3
Helling, C., van der Zee, L., Hofman, J., de Zwart, F., Mathew, S., Nieger, M. & Slootweg, J. . (2023). CCDC 2265220: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2g14m9
Helling, C., van der Zee, L., Hofman, J., de Zwart, F., Mathew, S., Nieger, M. & Slootweg, J. . (2023). CCDC 2283471: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2gn4cn
Helling, C., van der Zee, L., Hofman, J., de Zwart, F., Mathew, S., Nieger, M. & Slootweg, J. . (2023). CCDC 2265209: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2g148y
Helling, C., van der Zee, L., Hofman, J., de Zwart, F., Mathew, S., Nieger, M. & Slootweg, J. . (2023). CCDC 2265210: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2g149z
Helling, C., van der Zee, L. J. C., Hofman, J., de Zwart, F. J., Mathew, S., Nieger, M., & Slootweg, J. C. (2023). Homolytic C−H Bond Activation by Phosphine−Quinone-Based Radical Ion Pairs. Angewandte Chemie, 135(48), Article e202313397. https://doi.org/10.1002/ange.202313397[details]
Poole, III, D. A., Bobylev, E. O., de Bruin, B., Mathew, S., & Reek, J. N. H. (2023). Exposing Mechanisms for Defect Clearance in Supramolecular Self-Assembly: Palladium-Pyridine Coordination Revisited. Inorganic Chemistry, 62(14), 5458-5467. https://doi.org/10.1021/acs.inorgchem.2c04404[details]
Sun, B., Meeus, E. J., de Zwart, F. J., Bobylev, E. O., Mooibroek, T. J., Mathew, S., & Reek, J. N. H. (2023). Chirality-Driven Self-Assembly of Discrete, Homochiral FeII2L3 Cages. Chemistry - A European Journal, 29(23), Article e202203900. https://doi.org/10.1002/chem.202203900[details]
Sun, B., Meeus, E. J., de Zwart, F. J., Bobylev, O., Mooibroek, T. J., Mathew, S. & Reek, J. N. H. (2023). CCDC 2223691: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2dmxzy
Sun, B., Meeus, E. J., de Zwart, F. J., Bobylev, O., Mooibroek, T. J., Mathew, S. & Reek, J. N. H. (2023). CCDC 2223690: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2dmxyx
Zhou, M., Mathew, S., & de Bruin, B. (2023). Thermal and (Thermo-Reversible) Photochemical Cycloisomerization of 1H-2-Benzo[c]oxocins: From Synthetic Applications to the Development of a New T-Type Molecular Photoswitch. Journal of the American Chemical Society, 145(1), 645-657. https://doi.org/10.1021/jacs.2c11310[details]
Zhou, M., Mathew, S. & de Bruin, B. (2022). CCDC 2212964: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2d8ryd
de Zwart, F. J., Wolzak, L. A., Laan, P. C. M., Mathew, S., Flapper, J., van den Berg, K. J., Reek, J. N. H., & de Bruin, B. (2023). Thermal/Blue Light Induced Cross-Linking of Acrylic Coatings with Diazo Compounds. Macromolecular rapid communications, 44(21), Article 2300380. https://doi.org/10.1002/marc.202300380[details]
De Zwart, F. J., Laan, P. C. M., Van Leeuwen, N. S., Bobylev, E. O., Amstalden Van Hove, E. R., Mathew, S., Yan, N., Flapper, J., Van Den Berg, K. J., Reek, J. N. H., & De Bruin, B. (2022). Isocyanate-Free Polyurea Synthesis via Ru-Catalyzed Carbene Insertion into the N-H Bonds of Urea. Macromolecules, 55(21), 9690-9696. https://doi.org/10.1021/acs.macromol.2c01457[details]
Epping, R. F. J., Hoeksma, M. M., Bobylev, E. O., Mathew, S., & de Bruin, B. (2022). Cobalt(II)–tetraphenylporphyrin-catalysed carbene transfer from acceptor–acceptor iodonium ylides via N-enolate–carbene radicals. Nature Chemistry, 14(5), 550-557. https://doi.org/10.1038/s41557-022-00905-4[details]
Bobylev, O., Epping, R., Mathew, S., Hoeksma, M. M. & de Bruin, B. (2022). CCDC 2091203: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc28625r
Mouarrawis, V., Mathew, S., Meeus, E. J., de Bruin, B., & Reek, J. (2022). A chromatography-free synthesis of meso-tetrakis(4-formylphenyl) porphyrin and meso-tetrakis(3-formylphenyl) porphyrin: Versatile synthons in supramolecular and macromolecular chemistry. Journal of Porphyrins and Phthalocyanines, 26(6-7), 427-433. https://doi.org/10.1142/S1088424621500504[details]
Poole, D. A., Bobylev, E. O., Mathew, S., & Reek, J. N. H. (2022). Entropy directs the self-assembly of supramolecular palladium coordination macrocycles and cages. Chemical Science, 13(34), 10141-10148. https://doi.org/10.1039/d2sc03154j[details]
Sukowski, V., Mathew, S., van Borselen, M. & Fernández Ibáñez, T. (2022). CCDC 2128582: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc29fyyn
2021
Bruggeman, D. F., Bakker, T. M. A., Mathew, S., & Reek, J. N. H. (2021). Redox-Mediated Alcohol Oxidation Coupled to Hydrogen Gas Formation in a Dye-Sensitized Photosynthesis Cell. Chemistry-A European Journal, 27(1), 218-221. Advance online publication. https://doi.org/10.1002/chem.202003306[details]
Bruggeman, D. F., Mathew, S., Detz, R. J., & Reek, J. N. H. (2021). Comparison of homogeneous and heterogeneous catalysts in dye-sensitised photoelectrochemical cells for alcohol oxidation coupled to dihydrogen formation. Sustainable energy and fuels, 5(22), 5707-5716. https://doi.org/10.1039/d1se01275d[details]
Poole III, D. A., Mathew, S., & Reek, J. N. H. (2021). Just Add Water: Modulating the Structure-Derived Acidity of Catalytic Hexameric Resorcinarene Capsules. Journal of the American Chemical Society, 143(40), 16419-16427. https://doi.org/10.1021/jacs.1c04924[details]
Zhang, L-H., Mathew, S., Hessels, J., Reek, J. N. H., & Yu, F. (2021). Homogeneous Catalysts Based on First-Row Transition-Metals for Electrochemical Water Oxidation. ChemSusChem, 14(1), 234-250. Advance online publication. https://doi.org/10.1002/cssc.202001876[details]
Zhou, M., Wolzak, L. A., Li, Z., De Zwart, F. J., Mathew, S., & de Bruin, B. (2021). Catalytic Synthesis of 1 H-2-Benzoxocins: Cobalt(III)-Carbene Radical Approach to 8-Membered Heterocyclic Enol Ethers. Journal of the American Chemical Society, 143(48), 20501-20512. https://doi.org/10.1021/jacs.1c10927[details]
Wolzak, L., De Bruin, B., De Zwart, F. J., Mathew, S., Li, Z. & Zhou, M. (2021). CCDC 2093048: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc287zp6
2020
Poole III, D. A., Bobylev, E. O., Mathew, S., & Reek, J. N. H. (2020). Topological prediction of palladium coordination cages. Chemical Science, 11(45), 12350-12357. https://doi.org/10.1039/d0sc03992f[details]
Bakker, T. M. A., Mathew, S., & Reek, J. N. H. (2019). Lindqvist polyoxometalates as electrolytes in p-type dye sensitized solar cells. Sustainable energy & fuels, 3(1), 96-100. https://doi.org/10.1039/c8se00495a[details]
Bouwens, T., Mathew, S., & Reek, J. N. H. (2019). p-Type dye-sensitized solar cells based on pseudorotaxane mediated charge-transfer. Faraday Discussions, 215, 393-406. https://doi.org/10.1039/c8fd00169c[details]
Cheema, H., Baumann, A., Loya, E. K., Brogdon, P., McNamara, L. E., Carpenter, C. A., Hammer, N. I., Mathew, S., Risko, C., & Delcamp, J. H. (2019). Near-Infrared-Absorbing Indolizine-Porphyrin Push-Pull Dye for Dye-Sensitized Solar Cells. ACS Applied Materials and Interfaces, 11(18), 16474-16489. https://doi.org/10.1021/acsami.8b21414[details]
Nurttila, S. S., Zaffaroni, R., Mathew, S., & Reek, J. N. H. (2019). Control of the overpotential of a [FeFe] hydrogenase mimic by a synthetic second coordination sphere. Chemical Communications, 55(21), 3081-3084. https://doi.org/10.1039/c9cc00901a[details]
Yu, F., Poole III, D., Mathew, S., Yan, N., Hessels, J., Orth, N., Ivanović‐Burmazović, I., & Reek, J. N. H. (2018). Control over Electrochemical Water Oxidation Catalysis by Preorganization of Molecular Ruthenium Catalysts in Self-Assembled Nanospheres. Angewandte Chemie, International Edition, 57(35), 11247-11251. https://doi.org/10.1002/anie.201805244, https://doi.org/10.1002/ange.201805244[details]
Yu, F., Poole III, D., Mathew, S., Yan, N., Hessels, J., Orth, N., Ivanović‐Burmazović, I., & Reek, J. N. H. (2018). Control over Electrochemical Water Oxidation Catalysis by Preorganization of Molecular Ruthenium Catalysts in Self-Assembled Nanospheres. Angewandte Chemie, 130(35), 11417-11421. https://doi.org/10.1002/ange.201805244, https://doi.org/10.1002/anie.201805244[details]
Duan, J., Higuchi, M., Zheng, J., Noro, S., Chang, I-Y., Hyeon-Deuk, K., Mathew, S., Kusaka, S., Sivaniah, E., Matsuda, R., Sakaki, S., & Kitagawa, S. (2017). Density Gradation of Open Metal Sites in the Mesospace of Porous Coordination Polymers. Journal of the American Chemical Society, 139(33), 11576-11583. https://doi.org/10.1021/jacs.7b05702[details]
Noro, S.-I., Duan, J., Mathew, S., Kusaka, S., Sivaniah, E., Zheng, J., Chang, I.-Y., Matsuda, R., Sakaki, S., Kitagawa, S., Hyeon-Deuk, K. & Higuchi, M. (2017). CCDC 1490344: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1m0tm2
Sivaniah, E., Sakaki, S., Kitagawa, S., Higuchi, M., Zheng, J., Matsuda, R., Chang, I.-Y., Mathew, S., Kusaka, S., Duan, J., Hyeon-Deuk, K. & Noro, S.-I. (2017). CCDC 1490343: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1m0tl1
Ghalei, B., Kinoshita, Y., Wakimoto, K., Sakurai, K., Mathew, S., Yue, Y., Kusuda, H., Imahori, H., & Sivaniah, E. (2017). Surface functionalization of high free-volume polymers as a route to efficient hydrogen separation membranes. Journal of Materials Chemistry. A, 5(9), 4686-4694. https://doi.org/10.1039/c6ta09181d[details]
Yella, A., Mathew, S., Aghazada, S., Comte, P., Grätzel, M., & Nazeeruddin, M. K. (2017). Dye-sensitized solar cells using cobalt electrolytes: the influence of porosity and pore size to achieve high-efficiency. Journal of Materials Chemistry. C, 5(11), 2833-2843. https://doi.org/10.1039/c6tc05640g[details]
2016
Mathew, S., Astani, N. A., Curchod, B. F. E., Delcamp, J. H., Marszalek, M., Frey, J., Rothlisberger, U., Nazeeruddin, M. K., & Grätzel, M. (2016). Synthesis, characterization and ab initio investigation of a panchromatic ullazine-porphyrin photosensitizer for dye-sensitized solar cells. Journal of Materials Chemistry. A, 4(6), 2332-2339. https://doi.org/10.1039/c5ta08728g[details]
Bruggeman, D. F. (2022). Redox mediation in dye-sensitized photoelectrochemical cells: Coupling solar-driven oxidative catalysis to fuel generation. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Poole III, D. A. (2022). Unravelling self-assembled supramolecular constructs in catalysis with spectroscopic and computational methods. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Bakker, T. M. A. (2021). Dye-sensitized solar and photoelectrochemical cells: Fundamental insights and design principles. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Bouwens, T. (2021). Pseudorotaxane strategies for guiding self-assembly and the application of molecular machinery in photoelectrochemical devices. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
van Leeuwen, N. S., Mathew, S., van Lare, C. E. J., Ahr, M. P., Zwijnenburg, A., Pullen, S., de Bruin, B. & Guicking, D. (2024). CCDC 2225051: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2dpbv9
van Leeuwen, N. S., Mathew, S., van Lare, C. E. J., Ahr, M. P., Zwijnenburg, A., Pullen, S., de Bruin, B., Ríos, E. & Yang, F. (2024). CCDC 2225052: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2dpbwb
Evrard, Q., Sadegh, N., Mathew, S., Zuidinga, E., Watts, B., Paradiz Dominguez, M., Giglia, A., Mahne, N., Nannarone, S., Nishimura, A., Goya, T., Sugioka, T., Vockenhuber, M., Ekinci, Y. & Brouwer, A. M. (2024). CCDC 2332946: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2j9mbt
van Leeuwen, N. S., Mathew, S., van Lare, C. E. J., Ahr, M. P., Zwijnenburg, A., Pullen, S., de Bruin, B., Ahr, M. P. & Na, N. (2024). CCDC 2225048: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2dpbr6
van Leeuwen, N. S., Mathew, S., van Lare, C. E. J., Ahr, M. P., Zwijnenburg, A., Pullen, S., de Bruin, B., Truuts, T. & Sjöberg, K. (2024). CCDC 2225049: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2dpbs7
van Leeuwen, N. S., Mathew, S., van Lare, C. E. J., Ahr, M. P., Zwijnenburg, A., Pullen, S., de Bruin, B., Vincent, K. & Chrysochoos, A. (2024). CCDC 2225050: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2dpbt8
Sukowski, V., van Borselen, M., Mathew, S., de Bruin, B. & Fernández-Ibáñez, M. . (2024). CCDC 2262949: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2fysck
Epping, R. F. J., de Zwart, F. J., van Leest, N. P., van der Vlugt, J., Siegler, M. A., Mathew, S., Reek, J. N. H. & de Bruin, B. (2024). CCDC 2300376: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2h6qp4
Epping, R. F. J., de Zwart, F. J., van Leest, N. P., van der Vlugt, J., Siegler, M. A., Mathew, S., Reek, J. N. H. & de Bruin, B. (2024). CCDC 2277307: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2gfqj5
Epping, R. F. J., de Zwart, F. J., van Leest, N. P., van der Vlugt, J., Siegler, M. A., Mathew, S., Reek, J. N. H. & de Bruin, B. (2024). CCDC 2277310: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2gfqm8
Epping, R. F. J., de Zwart, F. J., van Leest, N. P., van der Vlugt, J., Siegler, M. A., Mathew, S., Reek, J. N. H. & de Bruin, B. (2024). CCDC 2277309: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2gfql7
Epping, R. F. J., de Zwart, F. J., van Leest, N. P., van der Vlugt, J., Siegler, M. A., Mathew, S., Reek, J. N. H. & de Bruin, B. (2024). CCDC 2277308: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2gfqk6
2023
Sukowski, V., van Borselen, M., Mathew, S., de Bruin, B. & Fernández-Ibáñez, M. . (2023). CCDC 2262950: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2fysdl
Sukowski, V., van Borselen, M., Mathew, S., de Bruin, B. & Fernández-Ibáñez, M. . (2023). CCDC 2262951: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2fysfm
Bobylev, O., Knol, R. A., Mathew, S., Kotsogianni, I., Martin, N. I., de Bruin, B., Kros, A., Reek, J. N. H. & Poole III, D. (2023). CCDC 2216167: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2dd386
Bobylev, O., Ruijter, J., Poole, D. A., Mathew, S., de Bruin, B. & Reek, J. N. H. (2023). CCDC 2189698: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2chkfw
Helling, C., van der Zee, L., Hofman, J., de Zwart, F., Mathew, S., Nieger, M. & Slootweg, J. . (2023). CCDC 2265213: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2g14d2
Helling, C., van der Zee, L., Hofman, J., de Zwart, F., Mathew, S., Nieger, M. & Slootweg, J. . (2023). CCDC 2265209: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2g148y
Helling, C., van der Zee, L., Hofman, J., de Zwart, F., Mathew, S., Nieger, M. & Slootweg, J. . (2023). CCDC 2283471: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2gn4cn
Helling, C., van der Zee, L., Hofman, J., de Zwart, F., Mathew, S., Nieger, M. & Slootweg, J. . (2023). CCDC 2265210: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2g149z
Helling, C., van der Zee, L., Hofman, J., de Zwart, F., Mathew, S., Nieger, M. & Slootweg, J. . (2023). CCDC 2265214: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2g14f3
Sun, B., Meeus, E. J., de Zwart, F. J., Bobylev, O., Mooibroek, T. J., Mathew, S. & Reek, J. N. H. (2023). CCDC 2223691: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2dmxzy
Sun, B., Meeus, E. J., de Zwart, F. J., Bobylev, O., Mooibroek, T. J., Mathew, S. & Reek, J. N. H. (2023). CCDC 2223690: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2dmxyx
Helling, C., van der Zee, L., Hofman, J., de Zwart, F., Mathew, S., Nieger, M. & Slootweg, J. . (2023). CCDC 2265220: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2g14m9
Helling, C., van der Zee, L., Hofman, J., de Zwart, F., Mathew, S., Nieger, M. & Slootweg, J. . (2023). CCDC 2265211: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2g14b0
Helling, C., van der Zee, L., Hofman, J., de Zwart, F., Mathew, S., Nieger, M. & Slootweg, J. . (2023). CCDC 2265212: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2g14c1
2022
Zhou, M., Mathew, S. & de Bruin, B. (2022). CCDC 2212964: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2d8ryd
Sukowski, V., Mathew, S., van Borselen, M. & Fernández Ibáñez, T. (2022). CCDC 2128582: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc29fyyn
Bobylev, O., Epping, R., Mathew, S., Hoeksma, M. M. & de Bruin, B. (2022). CCDC 2091203: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc28625r
Bouwens, T., Bakker, T., Hasenack, J., Dieperink, M., Brouwer, F., Huijser, A., Mathew, S. & Reek, J. N. H. (2022). Using supramolecular machinery to engineer directional charge propagation in photoelectrochemical devices. Figshare. https://doi.org/10.6084/m9.figshare.20508852.v1
2021
Wolzak, L., De Bruin, B., De Zwart, F. J., Mathew, S., Li, Z. & Zhou, M. (2021). CCDC 2093048: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc287zp6
2018
Cao, H., Wang, H., Jin, W., Duan, J., Zhou, B., Mathew, S., Kusaka, S., Zheng, J.-J., Kitagawa, S., Hosono, N. & Lyu, H. (2018). CCDC 1577545: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1pykkr
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.