For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Bouwens, T., Bakker, T. M. A., Zhu, K., Hasenack, J., Dieperink, M., Brouwer, A. M., Huijser, A., Mathew, S., & Reek, J. N. H. (2023). Using supramolecular machinery to engineer directional charge propagation in photoelectrochemical devices. Nature Chemistry, 15(2), 213-221. https://doi.org/10.1038/s41557-022-01068-y[details]
De Zwart, F. J., Laan, P. C. M., Van Leeuwen, N. S., Bobylev, E. O., Amstalden Van Hove, E. R., Mathew, S., Yan, N., Flapper, J., Van Den Berg, K. J., Reek, J. N. H., & De Bruin, B. (2022). Isocyanate-Free Polyurea Synthesis via Ru-Catalyzed Carbene Insertion into the N-H Bonds of Urea. Macromolecules, 55(21), 9690-9696. https://doi.org/10.1021/acs.macromol.2c01457[details]
Epping, R. F. J., Hoeksma, M. M., Bobylev, E. O., Mathew, S., & de Bruin, B. (2022). Cobalt(II)–tetraphenylporphyrin-catalysed carbene transfer from acceptor–acceptor iodonium ylides via N-enolate–carbene radicals. Nature Chemistry, 14(5), 550-557. https://doi.org/10.1038/s41557-022-00905-4[details]
Mouarrawis, V., Mathew, S., Meeus, E. J., de Bruin, B., & Reek, J. (2022). A chromatography-free synthesis of meso-tetrakis(4-formylphenyl) porphyrin and meso-tetrakis(3-formylphenyl) porphyrin: Versatile synthons in supramolecular and macromolecular chemistry. Journal of Porphyrins and Phthalocyanines, 26(6-7), 427-433. https://doi.org/10.1142/S1088424621500504[details]
Poole, D. A., Bobylev, E. O., Mathew, S., & Reek, J. N. H. (2022). Entropy directs the self-assembly of supramolecular palladium coordination macrocycles and cages. Chemical Science, 13(34), 10141-10148. https://doi.org/10.1039/d2sc03154j[details]
Bruggeman, D. F., Bakker, T. M. A., Mathew, S., & Reek, J. N. H. (2021). Redox-Mediated Alcohol Oxidation Coupled to Hydrogen Gas Formation in a Dye-Sensitized Photosynthesis Cell. Chemistry-A European Journal, 27(1), 218-221. https://doi.org/10.1002/chem.202003306[details]
Bruggeman, D. F., Mathew, S., Detz, R. J., & Reek, J. N. H. (2021). Comparison of homogeneous and heterogeneous catalysts in dye-sensitised photoelectrochemical cells for alcohol oxidation coupled to dihydrogen formation. Sustainable energy and fuels, 5(22), 5707-5716. https://doi.org/10.1039/d1se01275d[details]
Poole III, D. A., Mathew, S., & Reek, J. N. H. (2021). Just Add Water: Modulating the Structure-Derived Acidity of Catalytic Hexameric Resorcinarene Capsules. Journal of the American Chemical Society, 143(40), 16419-16427. https://doi.org/10.1021/jacs.1c04924[details]
Zhang, L-H., Mathew, S., Hessels, J., Reek, J. N. H., & Yu, F. (2021). Homogeneous Catalysts Based on First-Row Transition-Metals for Electrochemical Water Oxidation. ChemSusChem, 14(1), 234-250. https://doi.org/10.1002/cssc.202001876[details]
Zhou, M., Wolzak, L. A., Li, Z., De Zwart, F. J., Mathew, S., & de Bruin, B. (2021). Catalytic Synthesis of 1 H-2-Benzoxocins: Cobalt(III)-Carbene Radical Approach to 8-Membered Heterocyclic Enol Ethers. Journal of the American Chemical Society, 143(48), 20501-20512. https://doi.org/10.1021/jacs.1c10927[details]
Wolzak, L., De Bruin, B., De Zwart, F. J., Mathew, S., Li, Z. & Zhou, M. (2021). CCDC 2093048: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc287zp6
2020
Poole III, D. A., Bobylev, E. O., Mathew, S., & Reek, J. N. H. (2020). Topological prediction of palladium coordination cages. Chemical Science, 11(45), 12350-12357. https://doi.org/10.1039/d0sc03992f[details]
Bakker, T. M. A., Mathew, S., & Reek, J. N. H. (2019). Lindqvist polyoxometalates as electrolytes in p-type dye sensitized solar cells. Sustainable energy & fuels, 3(1), 96-100. https://doi.org/10.1039/c8se00495a[details]
Bouwens, T., Mathew, S., & Reek, J. N. H. (2019). p-Type dye-sensitized solar cells based on pseudorotaxane mediated charge-transfer. Faraday Discussions, 215, 393-406. https://doi.org/10.1039/c8fd00169c[details]
Cheema, H., Baumann, A., Loya, E. K., Brogdon, P., McNamara, L. E., Carpenter, C. A., ... Delcamp, J. H. (2019). Near-Infrared-Absorbing Indolizine-Porphyrin Push-Pull Dye for Dye-Sensitized Solar Cells. ACS Applied Materials and Interfaces, 11(18), 16474-16489. https://doi.org/10.1021/acsami.8b21414[details]
Nurttila, S. S., Zaffaroni, R., Mathew, S., & Reek, J. N. H. (2019). Control of the overpotential of a [FeFe] hydrogenase mimic by a synthetic second coordination sphere. Chemical Communications, 55(21), 3081-3084. https://doi.org/10.1039/c9cc00901a[details]
Yu, F., Poole III, D., Mathew, S., Yan, N., Hessels, J., Orth, N., ... Reek, J. N. H. (2018). Control over Electrochemical Water Oxidation Catalysis by Preorganization of Molecular Ruthenium Catalysts in Self-Assembled Nanospheres. Angewandte Chemie, International Edition, 57(35), 11247-11251. https://doi.org/10.1002/anie.201805244, https://doi.org/10.1002/ange.201805244[details]
Yu, F., Poole III, D., Mathew, S., Yan, N., Hessels, J., Orth, N., ... Reek, J. N. H. (2018). Control over Electrochemical Water Oxidation Catalysis by Preorganization of Molecular Ruthenium Catalysts in Self-Assembled Nanospheres. Angewandte Chemie, 130(35), 11417-11421. https://doi.org/10.1002/ange.201805244, https://doi.org/10.1002/anie.201805244[details]
Duan, J., Higuchi, M., Zheng, J., Noro, S., Chang, I-Y., Hyeon-Deuk, K., Mathew, S., Kusaka, S., Sivaniah, E., Matsuda, R., Sakaki, S., & Kitagawa, S. (2017). Density Gradation of Open Metal Sites in the Mesospace of Porous Coordination Polymers. Journal of the American Chemical Society, 139(33), 11576-11583. https://doi.org/10.1021/jacs.7b05702[details]
Noro, S.-I., Duan, J., Mathew, S., Kusaka, S., Sivaniah, E., Zheng, J., Chang, I.-Y., Matsuda, R., Sakaki, S., Kitagawa, S., Hyeon-Deuk, K. & Higuchi, M. (2017). CCDC 1490344: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1m0tm2
Sivaniah, E., Sakaki, S., Kitagawa, S., Higuchi, M., Zheng, J., Matsuda, R., Chang, I.-Y., Mathew, S., Kusaka, S., Duan, J., Hyeon-Deuk, K. & Noro, S.-I. (2017). CCDC 1490343: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1m0tl1
Ghalei, B., Kinoshita, Y., Wakimoto, K., Sakurai, K., Mathew, S., Yue, Y., ... Sivaniah, E. (2017). Surface functionalization of high free-volume polymers as a route to efficient hydrogen separation membranes. Journal of Materials Chemistry. A, 5(9), 4686-4694. https://doi.org/10.1039/c6ta09181d[details]
Yella, A., Mathew, S., Aghazada, S., Comte, P., Grätzel, M., & Nazeeruddin, M. K. (2017). Dye-sensitized solar cells using cobalt electrolytes: the influence of porosity and pore size to achieve high-efficiency. Journal of Materials Chemistry. C, 5(11), 2833-2843. https://doi.org/10.1039/c6tc05640g[details]
2016
Mathew, S., Astani, N. A., Curchod, B. F. E., Delcamp, J. H., Marszalek, M., Frey, J., ... Grätzel, M. (2016). Synthesis, characterization and ab initio investigation of a panchromatic ullazine-porphyrin photosensitizer for dye-sensitized solar cells. Journal of Materials Chemistry. A, 4(6), 2332-2339. https://doi.org/10.1039/c5ta08728g[details]
Bruggeman, D. F. (2022). Redox mediation in dye-sensitized photoelectrochemical cells: Coupling solar-driven oxidative catalysis to fuel generation. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Chapter 5: Surface-induced aggregation of benzoperylenes improves dye-sensitized photoanodes for solar-driven oxidative chemical transformations(embargo until 20 April 2024)
Bouwens, T. (2021). Pseudorotaxane strategies for guiding self-assembly and the application of molecular machinery in photoelectrochemical devices. [details]
Chapter 2: Pseudorotaxane formation stimulates the self-assembly of multicomponent M₁₂L₂₄ nanospheres: An example of supramolecular-guided catalysis(embargo until 15 September 2023)
Chapter 3: Supramolecular-guided organization and reorganization in mixed-ligand M₁₂L₂₄ nanospheres(embargo until 15 September 2023)
Chapter 6: A bioinspired strategy for directional charge propagation in photoelectrochemical devices using supramolecular machinery(embargo until 15 September 2023)
Chapter 7: Mimicking photosystem II with rotaxane dyes for charge rectification in p-type dye-sensitized solar cells(embargo until 15 September 2023)
Zhou, M., Mathew, S. & de Bruin, B. (2022). CCDC 2212964: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2d8ryd
Sukowski, V., Mathew, S., van Borselen, M. & Fernández Ibáñez, T. (2022). CCDC 2128582: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc29fyyn
Bobylev, O., Epping, R., Mathew, S., Hoeksma, M. M. & de Bruin, B. (2022). CCDC 2091203: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc28625r
2021
Wolzak, L., De Bruin, B., De Zwart, F. J., Mathew, S., Li, Z. & Zhou, M. (2021). CCDC 2093048: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc287zp6
2018
Cao, H., Wang, H., Jin, W., Duan, J., Zhou, B., Mathew, S., Kusaka, S., Zheng, J.-J., Kitagawa, S., Hosono, N. & Lyu, H. (2018). CCDC 1577545: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1pykkr
The UvA website uses cookies and similar technologies to ensure the basic functionality of the site and for statistical and optimisation purposes. It also uses cookies to display content such as YouTube videos and for marketing purposes. This last category consists of tracking cookies: these make it possible for your online behaviour to be tracked. You consent to this by clicking on Accept. Also read our Privacy statement
Necessary
Cookies that are essential for the basic functioning of the website. These cookies are used to enable students and staff to log in to the site, for example.
Necessary & Optimalisation
Cookies that collect information about visitor behaviour anonymously to help make the website work more effectively.
Necessary & Optimalisation & Marketing
Cookies that make it possible to track visitors and show them personalised adverts. These are used by third-party advertisers to gather data about online behaviour. To watch Youtube videos you need to enable this category.