Bretti, C., Mettes, P., Koops, H. V., Odijk, D., & van Noord, N. (2024). Find the Cliffhanger: Multi-modal Trailerness in Soap Operas. In S. Rudinac, A. Hanjalic, C. Liem, M. Worring, B. Þ. Jónsson, B. Liu, & Y. Yamakata (Eds.), MultiMedia Modeling: 30th International Conference, MMM 2024, Amsterdam, The Netherlands, January 29–February 2, 2024 : proceedings (Vol. II, pp. 199–212). (Lecture Notes in Computer Science; Vol. 14555). Springer. https://doi.org/10.1007/978-3-031-53308-2_15[details]
D’Amely di Melendugno, G. M., Flaborea, A., Mettes, P., & Galasso, F. (2024). Hyp2Nav: Hyperbolic Planning and Curiosity for Crowd Navigation. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems: IROS'24, Abu Dhabi, 14-18 October 2024 (pp. 13023–13030). IEEE. https://doi.org/10.1109/iros58592.2024.10801513[details]
Hu, V. T., Wu, D., Asano, Y. M., Mettes, P., Fernández-Méndez, F., Ommer, B., & Snoek, C. G. M. (2024). Flow Matching for Conditional Text Generation in a Few Sampling Steps. In Y. Graham, & M. Purver (Eds.), The 18th Conference of the European Chapter of the Association for Computational Linguistics: proceedings of the conference : EACL 2024 : March 17-22, 2024 (Vol. 2, pp. 380-392). Association for Computational Linguistics. https://doi.org/10.18653/v1/2024.eacl-short.33[details]
Hu, V. T., Zhang, W., Tang, M., Mettes, P., Zhao, D., & Snoek, C. (2024). Latent Space Editing in Transformer-Based Flow Matching. In M. Wooldridge, J. Dy, & S. Natarajan (Eds.), Proceedings of the 38th AAAI Conference on Artificial Intelligence: AAAI-2024 (Vol. 3, pp. 2247-2255). AAAI Press. https://doi.org/10.1609/aaai.v38i3.27998[details]
Mettes, P., Ghadimi Atigh, M., Keller-Ressel, M., Gu, J., & Yeung, S. (2024). Hyperbolic Deep Learning in Computer Vision: A Survey. International Journal of Computer Vision, 132(9), 3484-3508. https://doi.org/10.1007/s11263-024-02043-5[details]
Valenzuela, R. E. G., Mettes, P., Loos, B., Marquering, H., & Berkhout, E. (2024). Enhancement of early proximal caries annotations in radiographs: introducing the Diagnostic Insights for Radiographic Early-caries with micro-CT (ACTA-DIRECT) dataset. BMC Oral Health, 24, Article 1325. https://doi.org/10.1186/s12903-024-05076-x[details]
Burghouts, G., Cucchiara, R., Kasarla, T., Mettes, P., Van Der Pol, E., & Van Spengler, M. (2023). Maximum Class Separation as Inductive Bias in One Matrix. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), 36th Conference on Neural Information Processing Systems (NeurIPS 2022): New Orleans, Louisiana, USA, 28 November-9 December 2022 (Vol. 26, pp. 19553-19566). (Advances in Neural Information Processing Systems; Vol. 35). Neural Information Processing Systems Foundation. https://doi.org/10.48550/arXiv.2206.08704[details]
Chen, S., Du, Y., Mettes, P., & Snoek, C. G. M. (2023). Multi-Label Meta Weighting for Long-Tailed Dynamic Scene Graph Generation. In ICMR'23: proceedings of the 2023 ACM International Conference on Multimedia Retrieval : Thessaloniki, Greece, June 12-15, 2023 (pp. 39-47). Association for Computing Machinery. https://doi.org/10.48550/arXiv.2306.10122, https://doi.org/10.1145/3591106.3592267[details]
Mensink, T., & Mettes, P. (2023). Infinite Class Mixup. In The 34th British Machine Vision Conference Proceedings: BMVC 2023 : 20th-24th November 2023, Aberdeen, UK Article 135 BMVA Press. https://doi.org/10.48550/arXiv.2305.10293[details]
Mettes, P. (2023). Hyperbolic Graph Codebooks. In G. Nicosia, V. Ojha, E. La Malfa, G. La Malfa, P. Pardalos, G. Di Fatta, G. Giuffrida, & R. Umeton (Eds.), Machine Learning, Optimization, and Data Science: 8th International Conference, LOD 2022, Certosa di Pontignano, Italy, September 19–22, 2022, Revised Selected Papers (Vol. I, pp. 48-61). (Lecture Notes in Computer Science; Vol. 13810). Springer. https://doi.org/10.1007/978-3-031-25599-1_5[details]
Mettes, P. (2023). Universal Prototype Transport for Zero-Shot Action Recognition and Localization. International Journal of Computer Vision, 131(11), 3060-3073. https://doi.org/10.1007/s11263-023-01846-2[details]
van Spengler, M., Wirth, P., & Mettes, P. (2023). HypLL: The Hyperbolic Learning Library. In MM '23: Proceedings of the 31st ACM International Conference on Multimedia : Oct 29-Nov 3m 2023, Ottawa, Canada (pp. 9676–9679). Association for Computing Machinery. https://doi.org/10.1145/3581783.3613462[details]
Byvshev, P., Mettes, P., & Xiao, Y. (2022). Are 3D convolutional networks inherently biased towards appearance? Computer Vision and Image Understanding, 220, Article 103437. https://doi.org/10.1016/j.cviu.2022.103437[details]
Ghadimi Atigh, M., Keller-Ressel, M., & Mettes, P. (2022). Hyperbolic Busemann Learning with Ideal Prototypes. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. Wortman Vaughan (Eds.), 35th Conference on Neural Information Processing Systems (NeurIPS 2021) : online, 6-14 December 2021 (Vol. 1, pp. 103-115). (Advances in Neural Information Processing Systems; Vol. 34). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2021/hash/01259a0cb2431834302abe2df60a1327-Abstract.html[details]
GhadimiAtigh, M., Schoep, J., Acar, E., van Noord, N., & Mettes, P. (2022). Hyperbolic Image Segmentation. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition: New Orleans, Louisiana, 19-24 June 2022 : proceedings (pp. 4443-4452). (CVPR). IEEE Computer Society. https://doi.org/10.1109/CVPR52688.2022.00441[details]
Schutte, J., & Mettes, P. (2022). Teaching a New Dog Old Tricks: Contrastive Random Walks in Videos with Unsupervised Priors. In ICMR '22: proceedings of the 2022 International Conference on Multimedia Retrieval : June 27-30, 2022, Newark, NJ, USA (pp. 176-184). The Association for Computing Machinery. https://doi.org/10.1145/3512527.3531376[details]
Shi, Z., Mettes, P., Maji, S., & Snoek, C. G. M. (2022). On Measuring and Controlling the Spectral Bias of the Deep Image Prior. International Journal of Computer Vision, 130(4), 885–908. https://doi.org/10.1007/s11263-021-01572-7[details]
Yang, P., Asano, Y. M., Mettes, P., & Snoek, C. G. M. (2022). Less than Few: Self-Shot Video Instance Segmentation. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, & T. Hassner (Eds.), Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022 : proceedings (Vol. XXXIV, pp. 449–466). (Lecture Notes in Computer Science; Vol. 13694). Springer. https://doi.org/10.1007/978-3-031-19830-4_26[details]
Ülger, O., Wiederer, J., Ghafoorian, M., Belagiannis, V., & Mettes, P. (2022). Multi-Task Edge Prediction in Temporally-Dynamic Video Graphs. In The 33rd British Machine Vision Conference Proceedings: BMVC 2022 : 21st-24th November 2022, London, UK Article 968 BMVA Press. https://bmvc2022.mpi-inf.mpg.de/968/[details]
Chen, S., Mettes, P., & Snoek, C. G. M. (2021). Diagnosing Errors in Video Relation Detectors. In 32nd British Machine Vision Conference 2021: BMVC 2021, Online, November 22-25, 2021 Article 241 BMVA Press. [details]
Chen, S., Shi, Z., Mettes, P., & Snoek, C. G. M. (2021). Social fabric: Tubelet compositions for video relation detection. In 2021 IEEE/CVF International Conference on Computer Vision: proceedings : ICCV 2021 : 11-17 October 2021, virtual event (pp. 13465-13474). (International Conference on Computer Vision; Vol. 18). IEEE Computer Society. https://doi.org/10.1109/ICCV48922.2021.01323[details]
Mettes, P., Thong, W., & Snoek, C. G. M. (2021). Object priors for classifying and localizing unseen actions. International Journal of Computer Vision, 129(6), 1954–1971. https://doi.org/10.1007/s11263-021-01454-y[details]
Yang, P., Mettes, P., & Snoek, C. G. M. (2021). Few-Shot Transformation of Common Actions into Time and Space. In Proceedings, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition: virtual, 9-25 June 2021 (pp. 16026-16035). (CVPR). Conference Publishing Services, IEEE Computer Society. https://doi.org/10.48550/arXiv.2104.02439, https://doi.org/10.1109/CVPR46437.2021.01577[details]
Byvshev, P., Mettes, P., & Xiao, Y. (2020). Heterogeneous Non-Local Fusion for Multimodal Activity Recognition. In ICMR '20: proceedings of the 2020 International Conference on Multimedia Retrieval : June 08-11, 2020, Dublin, Ireland (pp. 63-72). The Association for Computing Machinery. https://doi.org/10.1145/3372278.3390675[details]
Chen, S., Mettes, P., Hu, T., & Snoek, C. G. M. (2020). Interactivity Proposals for Surveillance Videos. In ICMR '20: proceedings of the 2020 International Conference on Multimedia Retrieval : June 08-11, 2020, Dublin, Ireland (pp. 108-116). The Association for Computing Machinery. https://doi.org/10.1145/3372278.3390680[details]
Chen, Y., Hu, V. T., Gavves, E., Mensink, T., Mettes, P., Yang, P., & Snoek, C. G. M. (2020). PointMixup: Augmentation for Point Clouds. In A. Vedaldi, H. Bischof, T. Brox, & J. M. Frahm (Eds.), Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020 : proceedings (Vol. III, pp. 330-345). (Lecture Notes in Computer Science; Vol. 12348). Springer. https://doi.org/10.1007/978-3-030-58580-8_20[details]
Dijt, P., & Mettes, P. (2020). Trajectory Prediction Network for Future Anticipation of Ships. In ICMR '20: proceedings of the 2020 International Conference on Multimedia Retrieval : June 08-11, 2020, Dublin, Ireland (pp. 73-81). The Association for Computing Machinery. https://doi.org/10.1145/3372278.3390676[details]
Long, T., Mettes, P., Shen, H. T., & Snoek, C. (2020). Searching for Actions on the Hyperbole. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition: proceedings : virtual, 14-19 June 2020 (pp. 1138-1147). (CVPR). IEEE Computer Society. https://doi.org/10.1109/CVPR42600.2020.00122[details]
Mettes, P., Koelma, D. C., & Snoek, C. G. M. (2020). Shuffled ImageNet Banks for Video Event Detection and Search. ACM Transactions on Multimedia Computing Communications and Applications, 16(2), Article 44. https://doi.org/10.1145/3377875[details]
Mettes, P., Van Der Pol, E., & Snoek, C. (2020). Hyperspherical Prototype Networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), 32nd Conference on Neural Information Processing Systems (NeurIPS 2019): Vancouver, Canada, 8-14 December 2019 (pp. 1476-1486). (Advances in Neural Information Processing Systems; Vol. 32). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2019/hash/02a32ad2669e6fe298e607fe7cc0e1a0-Abstract.html[details]
Yang, P., Hu, V. T., Mettes, P., & Snoek, C. G. M. (2020). Localizing the Common Action Among a Few Videos. In A. Vedaldi, H. Bischof, T. Brox, & J.-M. Frahm (Eds.), Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020 : proceedings (Vol. VII, pp. 505-521). (Lecture Notes in Computer Science; Vol. 12352). Springer. https://doi.org/10.1007/978-3-030-58571-6_30[details]
Zuanazzi, V., van Vugt, J., Booij, O., & Mettes, P. (2020). Adversarial Self-Supervised Scene Flow Estimation. In 2020 International Conference on 3D Vision: 3DV 2020 : proceedings : 25-28 November 2020, virtual event (pp. 1049-1058). IEEE Computer Society. https://doi.org/10.1109/3DV50981.2020.00115[details]
Brown, A., Mettes, P., & Worring, M. (2019). 4-Connected Shift Residual Networks. In 2019 International Conference on Computer Vision, Workshops: proceedings : 27 October-2 November 2019, Seoul, Korea (pp. 1990-1997). IEEE Computer Society. https://doi.org/10.1109/ICCVW.2019.00248[details]
Hommos, O., Pintea, S. L., Mettes, P. S. M., & van Gemert, J. C. (2019). Using phase instead of optical flow for action recognition. In L. Leal-Taixé, & S. Roth (Eds.), Computer Vision – ECCV 2018 Workshops: Munich, Germany, September 8-14, 2018 : proceedings (Vol. VI, pp. 678-691). (Lecture Notes in Computer Science; Vol. 11134). Springer. https://doi.org/10.1007/978-3-030-11024-6_51[details]
Hu, T., Mettes, P., Huang, J.-H., & Snoek, C. G. M. (2019). SILCO: Show a Few Images, Localize the Common Object. In Proceedings, 2019 International Conference on Computer Vision: 27 October-2 November 2019, Seoul, Korea (pp. 5066-5075). (ICCV). IEEE Computer Society. https://doi.org/10.1109/ICCV.2019.00517[details]
Ibrahimi, S., Chen, S., Arya, D., Câmara, A., Chen, Y., Crijns, T., van der Goes, M., Mensink, T., van Miltenburg, E., Odijk, D., Thong, W., Zhao, J., & Mettes, P. (2019). Interactive Exploration of Journalistic Video Footage through Multimodal Semantic Matching. In MM'19: proceedings of the 27th ACM Conference on Multimedia : October 21-25, 2019, Nice, France (pp. 2196-2198). Association for Computing Machinery. https://doi.org/10.1145/3343031.3350597[details]
Shi, Z., Mettes, P., & Snoek, C. G. M. (2019). Counting with Focus for Free. In Proceedings, 2019 International Conference on Computer Vision: 27 October-2 November 2019, Seoul, Korea (pp. 4199-4208). (ICCV). IEEE Computer Society. https://doi.org/10.1109/ICCV.2019.00430[details]
de la Riva, M., & Mettes, P. (2019). Bayesian 3D ConvNets for Action Recognition from Few Examples. In 2019 International Conference on Computer Vision, Workshops: proceedings : 27 October-2 November 2019, Seoul, Korea (pp. 1337-1343). IEEE Computer Society. https://doi.org/10.1109/ICCVW.2019.00169[details]
2017
Mensink, T., Jongstra, T., Mettes, P., & Snoek, C. G. M. (2017). Music-Guided Video Summarization using Quadratic Assignments. In ICMR '17: proceedings of the 2017 ACM International Conference on Multimedia Retrieval : June 6-9, 2017, Bucharest, Romania (pp. 58-64). The Association for Computing Machinery. https://doi.org/10.1145/3078971.3079024[details]
Mettes, P., & Snoek, C. G. M. (2017). Spatial-Aware Object Embeddings for Zero-Shot Localization and Classification of Actions. In 2017 IEEE International Conference on Computer Vision : ICCV 2017: proceedings : 22-29 October 2017, Venice, Italy (pp. 4453-4462). IEEE Computer Society. https://doi.org/10.1109/ICCV.2017.476[details]
Mettes, P., Snoek, C. G. M., & Chang, S.-F. (2017). Localizing Actions from Video Labels and Pseudo-Annotations. In T. K. Kim, S. Zafeiriou, G. Brostow, & K. Mikolajczyk (Eds.), Proceedings of the British Machine Vision Conference 2017 Article 22 BMVA Press. https://doi.org/10.5244/C.31.22[details]
Mettes, P., Koelma, D. C., & Snoek, C. G. M. (2016). The ImageNet Shuffle: Reorganized Pre-training for Video Event Detection. In ICMR'16: proceedings of the 2016 ACM International Conference on Multimedia Retrieval: June 6-9, 2016, New York, NY, USA (pp. 175-182). Association for Computing Machinery. https://doi.org/10.1145/2911996.2912036[details]
Mettes, P., van Gemert, J. C., & Snoek, C. G. M. (2016). No Spare Parts: Sharing Part Detectors for Image Categorization. Computer Vision and Image Understanding, 152, 131-141. https://doi.org/10.1016/j.cviu.2016.07.008[details]
Mettes, P., van Gemert, J. C., & Snoek, C. G. M. (2016). Spot On: Action Localization from Pointly-Supervised Proposals. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016 : proceedings (Vol. 5, pp. 437-453). (Lecture Notes in Computer Science; Vol. 9909). Springer. https://doi.org/10.1007/978-3-319-46454-1_27[details]
Mettes, P., van Gemert, J. C., Cappallo, S., Mensink, T., & Snoek, C. G. M. (2015). Bag-of-Fragments: Selecting and encoding video fragments for event detection and recounting. In ICMR'15: proceedings of the 2015 ACM International Conference on Multimedia Retrieval: June 23-26, 2015, Shanghai, China (pp. 427-434). Association for Computing Machinery. https://doi.org/10.1145/2671188.2749404[details]
Snoek, C. G. M., Cappallo, S., Fontijne, D., Julian, D., Koelma, D. C., Mettes, P., van de Sande, K. E. A., Sarah, A., Stokman, H., & Towal, R. B. (2015). Qualcomm Research and University of Amsterdam at TRECVID 2015: Recognizing Concepts, Objects, and Events in Video. In 2015 TREC Video Retrieval Evaluation: notebook papers and slides National Institute of Standards and Technology. http://www-nlpir.nist.gov/projects/tvpubs/tv15.papers/mediamill.pdf[details]
van Gemert, J. C., Verschoor, C. R., Mettes, P., Epema, K., Koh, L. P., & Wich, S. (2015). Nature Conservation Drones for Automatic Localization and Counting of Animals. In L. Agapito, M. M. Bronstein, & C. Rother (Eds.), Computer Vision - ECCV 2014 Workshops: Zurich, Switzerland, September 6-7 and 12, 2014: proceedings (Vol. 1, pp. 255-270). (Lecture Notes in Computer Science ; Vol. 8925). Springer. https://doi.org/10.1007/978-3-319-16178-5_17[details]
Snoek, C. G. M., van de Sande, K. E. A., Fontijne, D., Cappallo, S., van Gemert, J., Habibian, A., Mensink, T., Mettes, P., Tao, R., Koelma, D. C., & Smeulders, A. W. M. (2014). MediaMill at TRECVID 2014: Searching Concepts, Objects, Instances and Events in Video. In 2014 TREC Video Retrieval Evaluation: notebook papers and slides National Institute of Standards and Technology. http://www-nlpir.nist.gov/projects/tvpubs/tv14.papers/mediamill.pdf[details]
Gonzalez Valenzuela, R., Berkhout, E., Marquering, H., Mettes, P. & Loos, B. (2025). ACTA-DIRECT Dataset v2. Vrije Universiteit Amsterdam. https://doi.org/10.48338/vu01-h5alyj
2024
Gonzalez Valenzuela, R., Berkhout, E., Marquering, H., Mettes, P. & Loos, B. (2024). ACTA-DIRECT Dataset. Vrije Universiteit Amsterdam. https://doi.org/10.48338/vu01-wk8sqn
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.