For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Burghouts, G., Cucchiara, R., Kasarla, T., Mettes, P., Van Der Pol, E., & Van Spengler, M. (2023). Maximum Class Separation as Inductive Bias in One Matrix. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), 36th Conference on Neural Information Processing Systems (NeurIPS 2022): New Orleans, Louisiana, USA, 28 November-9 December 2022 (Vol. 26, pp. 19553-19566). (Advances in Neural Information Processing Systems; Vol. 35). Neural Information Processing Systems Foundation. https://doi.org/10.48550/arXiv.2206.08704[details]
Mettes, P. (2023). Hyperbolic Graph Codebooks. In G. Nicosia, V. Ojha, E. La Malfa, G. La Malfa, P. Pardalos, G. Di Fatta, G. Giuffrida, & R. Umeton (Eds.), Machine Learning, Optimization, and Data Science: 8th International Conference, LOD 2022, Certosa di Pontignano, Italy, September 19–22, 2022, Revised Selected Papers (Vol. I, pp. 48-61). (Lecture Notes in Computer Science; Vol. 13810). Springer. https://doi.org/10.1007/978-3-031-25599-1_5[details]
2022
Byvshev, P., Mettes, P., & Xiao, Y. (2022). Are 3D convolutional networks inherently biased towards appearance? Computer Vision and Image Understanding, 220, [103437]. https://doi.org/10.1016/j.cviu.2022.103437[details]
Ghadimi Atigh, M., Keller-Ressel, M., & Mettes, P. (2022). Hyperbolic Busemann Learning with Ideal Prototypes. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. Wortman Vaughan (Eds.), 35th Conference on Neural Information Processing Systems (NeurIPS 2021) : online, 6-14 December 2021 (Vol. 1, pp. 103-115). (Advances in Neural Information Processing Systems; Vol. 34). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2021/hash/01259a0cb2431834302abe2df60a1327-Abstract.html[details]
GhadimiAtigh, M., Schoep, J., Acar, E., van Noord, N., & Mettes, P. (2022). Hyperbolic Image Segmentation. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition: New Orleans, Louisiana, 19-24 June 2022 : proceedings (pp. 4443-4452). (CVPR). IEEE Computer Society. https://doi.org/10.1109/CVPR52688.2022.00441[details]
Schutte, J., & Mettes, P. (2022). Teaching a New Dog Old Tricks: Contrastive Random Walks in Videos with Unsupervised Priors. In ICMR '22: proceedings of the 2022 International Conference on Multimedia Retrieval : June 27-30, 2022, Newark, NJ, USA (pp. 176-184). The Association for Computing Machinery. https://doi.org/10.1145/3512527.3531376[details]
Shi, Z., Mettes, P., Maji, S., & Snoek, C. G. M. (2022). On Measuring and Controlling the Spectral Bias of the Deep Image Prior. International Journal of Computer Vision, 130(4), 885–908. https://doi.org/10.1007/s11263-021-01572-7[details]
Yang, P., Asano, Y. M., Mettes, P., & Snoek, C. G. M. (2022). Less than Few: Self-Shot Video Instance Segmentation. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, & T. Hassner (Eds.), Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022 : proceedings (Vol. XXXIV, pp. 449–466). (Lecture Notes in Computer Science; Vol. 13694). Springer. https://doi.org/10.1007/978-3-031-19830-4_26[details]
Ülger, O., Wiederer, J., Ghafoorian, M., Belagiannis, V., & Mettes, P. S. M. (2022). Multi-Task Edge Prediction in Temporally-Dynamic Video Graphs. In British Machine Vision Conference
2021
Bretti, C., & Mettes, P. S. M. (2021). Zero-Shot Action Recognition from Diverse Object-Scene Compositions. In British Machine Vision Conference
Chen, S., Mettes, P. S. M., & Snoek, C. G. M. (2021). Diagnosing Errors in Video Relation Detectors. In British Machine Vision Conference
Chen, S., Shi, Z., Mettes, P., & Snoek, C. G. M. (2021). Social fabric: Tubelet compositions for video relation detection. In 2021 IEEE/CVF International Conference on Computer Vision: proceedings : ICCV 2021 : 11-17 October 2021, virtual event (pp. 13465-13474). (International Conference on Computer Vision; Vol. 18). IEEE Computer Society. https://doi.org/10.1109/ICCV48922.2021.01323[details]
Mettes, P., Thong, W., & Snoek, C. G. M. (2021). Object priors for classifying and localizing unseen actions. International Journal of Computer Vision, 129(6), 1954–1971. https://doi.org/10.1007/s11263-021-01454-y[details]
Yang, P., Mettes, P., & Snoek, C. G. M. (2021). Few-Shot Transformation of Common Actions into Time and Space. In Proceedings, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition: virtual, 9-25 June 2021 (pp. 16026-16035). (CVPR). Conference Publishing Services, IEEE Computer Society. https://doi.org/10.48550/arXiv.2104.02439, https://doi.org/10.1109/CVPR46437.2021.01577[details]
Byvshev, P., Mettes, P., & Xiao, Y. (2020). Heterogeneous Non-Local Fusion for Multimodal Activity Recognition. In ICMR '20: proceedings of the 2020 International Conference on Multimedia Retrieval : June 08-11, 2020, Dublin, Ireland (pp. 63-72). The Association for Computing Machinery. https://doi.org/10.1145/3372278.3390675[details]
Chen, S., Mettes, P., Hu, T., & Snoek, C. G. M. (2020). Interactivity Proposals for Surveillance Videos. In ICMR '20: proceedings of the 2020 International Conference on Multimedia Retrieval : June 08-11, 2020, Dublin, Ireland (pp. 108-116). The Association for Computing Machinery. https://doi.org/10.1145/3372278.3390680[details]
Chen, Y., Hu, V. T., Gavves, E., Mensink, T., Mettes, P., Yang, P., & Snoek, C. G. M. (2020). PointMixup: Augmentation for Point Clouds. In A. Vedaldi, H. Bischof, T. Brox, & J. M. Frahm (Eds.), Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020 : proceedings (Vol. III, pp. 330-345). (Lecture Notes in Computer Science; Vol. 12348). Springer. https://doi.org/10.1007/978-3-030-58580-8_20[details]
Dijt, P., & Mettes, P. (2020). Trajectory Prediction Network for Future Anticipation of Ships. In ICMR '20: proceedings of the 2020 International Conference on Multimedia Retrieval : June 08-11, 2020, Dublin, Ireland (pp. 73-81). The Association for Computing Machinery. https://doi.org/10.1145/3372278.3390676[details]
Long, T., Mettes, P., Shen, H. T., & Snoek, C. (2020). Searching for Actions on the Hyperbole. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition: proceedings : virtual, 14-19 June 2020 (pp. 1138-1147). (CVPR). IEEE Computer Society. https://doi.org/10.1109/CVPR42600.2020.00122[details]
Mettes, P., Koelma, D. C., & Snoek, C. G. M. (2020). Shuffled ImageNet Banks for Video Event Detection and Search. ACM Transactions on Multimedia Computing Communications and Applications, 16(2), [44]. https://doi.org/10.1145/3377875[details]
Mettes, P., Van Der Pol, E., & Snoek, C. (2020). Hyperspherical Prototype Networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), 32nd Conference on Neural Information Processing Systems (NeurIPS 2019): Vancouver, Canada, 8-14 December 2019 (pp. 1476-1477). (Advances in Neural Information Processing Systems; Vol. 32). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2019/hash/02a32ad2669e6fe298e607fe7cc0e1a0-Abstract.html[details]
Yang, P., Hu, V. T., Mettes, P., & Snoek, C. G. M. (2020). Localizing the Common Action Among a Few Videos. In A. Vedaldi, H. Bischof, T. Brox, & J-M. Frahm (Eds.), Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020 : proceedings (Vol. VII, pp. 505-521). (Lecture Notes in Computer Science; Vol. 12352). Springer. https://doi.org/10.1007/978-3-030-58571-6_30[details]
Zuanazzi, V., van Vugt, J., Booij, O., & Mettes, P. (2020). Adversarial Self-Supervised Scene Flow Estimation. In 2020 International Conference on 3D Vision: 3DV 2020 : proceedings : 25-28 November 2020, virtual event (pp. 1049-1058). IEEE Computer Society. https://doi.org/10.1109/3DV50981.2020.00115[details]
Brown, A., Mettes, P., & Worring, M. (2019). 4-Connected Shift Residual Networks. In 2019 International Conference on Computer Vision, Workshops: proceedings : 27 October-2 November 2019, Seoul, Korea (pp. 1990-1997). Los Alamitos, California: IEEE Computer Society. https://doi.org/10.1109/ICCVW.2019.00248[details]
Hommos, O., Pintea, S. L., Mettes, P. S. M., & van Gemert, J. C. (2019). Using phase instead of optical flow for action recognition. In L. Leal-Taixé, & S. Roth (Eds.), Computer Vision – ECCV 2018 Workshops: Munich, Germany, September 8-14, 2018 : proceedings (Vol. VI, pp. 678-691). (Lecture Notes in Computer Science; Vol. 11134). Springer. https://doi.org/10.1007/978-3-030-11024-6_51[details]
Hu, T., Mettes, P., Huang, J-H., & Snoek, C. G. M. (2019). SILCO: Show a Few Images, Localize the Common Object. In Proceedings, 2019 International Conference on Computer Vision: 27 October-2 November 2019, Seoul, Korea (pp. 5066-5075). (ICCV). IEEE Computer Society. https://doi.org/10.1109/ICCV.2019.00517[details]
Ibrahimi, S., Chen, S., Arya, D., Câmara, A., Chen, Y., Crijns, T., ... Mettes, P. (2019). Interactive Exploration of Journalistic Video Footage through Multimodal Semantic Matching. In MM'19: proceedings of the 27th ACM Conference on Multimedia : October 21-25, 2019, Nice, France (pp. 2196-2198). New York, NY: Association for Computing Machinery. https://doi.org/10.1145/3343031.3350597[details]
Shi, Z., Mettes, P., & Snoek, C. G. M. (2019). Counting with Focus for Free. In Proceedings, 2019 International Conference on Computer Vision: 27 October-2 November 2019, Seoul, Korea (pp. 4199-4208). (ICCV). IEEE Computer Society. https://doi.org/10.1109/ICCV.2019.00430[details]
de la Riva, M., & Mettes, P. (2019). Bayesian 3D ConvNets for Action Recognition from Few Examples. In 2019 International Conference on Computer Vision, Workshops: proceedings : 27 October-2 November 2019, Seoul, Korea (pp. 1337-1343). Los Alamitos, California: IEEE Computer Society. https://doi.org/10.1109/ICCVW.2019.00169[details]
2017
Mensink, T., Jongstra, T., Mettes, P., & Snoek, C. G. M. (2017). Music-Guided Video Summarization using Quadratic Assignments. In ICMR '17: proceedings of the 2017 ACM International Conference on Multimedia Retrieval : June 6-9, 2017, Bucharest, Romania (pp. 58-64). The Association for Computing Machinery. https://doi.org/10.1145/3078971.3079024[details]
Mettes, P., & Snoek, C. G. M. (2017). Spatial-Aware Object Embeddings for Zero-Shot Localization and Classification of Actions. In 2017 IEEE International Conference on Computer Vision : ICCV 2017: proceedings : 22-29 October 2017, Venice, Italy (pp. 4453-4462). IEEE Computer Society. https://doi.org/10.1109/ICCV.2017.476[details]
Mettes, P., Snoek, C. G. M., & Chang, S-F. (2017). Localizing Actions from Video Labels and Pseudo-Annotations. In T. K. Kim, S. Zafeiriou, G. Brostow, & K. Mikolajczyk (Eds.), Proceedings of the British Machine Vision Conference 2017 [22] BMVA Press. https://doi.org/10.5244/C.31.22[details]
Mettes, P., Koelma, D. C., & Snoek, C. G. M. (2016). The ImageNet Shuffle: Reorganized Pre-training for Video Event Detection. In ICMR'16: proceedings of the 2016 ACM International Conference on Multimedia Retrieval: June 6-9, 2016, New York, NY, USA (pp. 175-182). Association for Computing Machinery. https://doi.org/10.1145/2911996.2912036[details]
Mettes, P., van Gemert, J. C., & Snoek, C. G. M. (2016). No Spare Parts: Sharing Part Detectors for Image Categorization. Computer Vision and Image Understanding, 152, 131-141. https://doi.org/10.1016/j.cviu.2016.07.008[details]
Mettes, P., van Gemert, J. C., & Snoek, C. G. M. (2016). Spot On: Action Localization from Pointly-Supervised Proposals. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016 : proceedings (Vol. 5, pp. 437-453). (Lecture Notes in Computer Science; Vol. 9909). Springer. https://doi.org/10.1007/978-3-319-46454-1_27[details]
Mettes, P., van Gemert, J. C., Cappallo, S., Mensink, T., & Snoek, C. G. M. (2015). Bag-of-Fragments: Selecting and encoding video fragments for event detection and recounting. In ICMR'15: proceedings of the 2015 ACM International Conference on Multimedia Retrieval: June 23-26, 2015, Shanghai, China (pp. 427-434). Association for Computing Machinery. https://doi.org/10.1145/2671188.2749404[details]
Snoek, C. G. M., Cappallo, S., Fontijne, D., Julian, D., Koelma, D. C., Mettes, P., van de Sande, K. E. A., Sarah, A., Stokman, H., & Towal, R. B. (2015). Qualcomm Research and University of Amsterdam at TRECVID 2015: Recognizing Concepts, Objects, and Events in Video. In 2015 TREC Video Retrieval Evaluation: notebook papers and slides National Institute of Standards and Technology. http://www-nlpir.nist.gov/projects/tvpubs/tv15.papers/mediamill.pdf[details]
van Gemert, J. C., Verschoor, C. R., Mettes, P., Epema, K., Koh, L. P., & Wich, S. (2015). Nature Conservation Drones for Automatic Localization and Counting of Animals. In L. Agapito, M. M. Bronstein, & C. Rother (Eds.), Computer Vision - ECCV 2014 Workshops: Zurich, Switzerland, September 6-7 and 12, 2014: proceedings (Vol. 1, pp. 255-270). (Lecture Notes in Computer Science ; Vol. 8925). Springer. https://doi.org/10.1007/978-3-319-16178-5_17[details]
Snoek, C. G. M., van de Sande, K. E. A., Fontijne, D., Cappallo, S., van Gemert, J., Habibian, A., ... Smeulders, A. W. M. (2014). MediaMill at TRECVID 2014: Searching Concepts, Objects, Instances and Events in Video. In 2014 TREC Video Retrieval Evaluation: notebook papers and slides Gaithersburg, MD: National Institute of Standards and Technology. [details]
Snoek, C., Mettes, P., Janssen, H., Blanke, T., Groen, I. & Rudinac, S. (2023). Artificial Intelligence for video from a multidisciplinary perspective.
2023
Chen, S. (2023). Machine perception of interactivity in videos. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
The UvA website uses cookies and similar technologies to ensure the basic functionality of the site and for statistical and optimisation purposes. It also uses cookies to display content such as YouTube videos and for marketing purposes. This last category consists of tracking cookies: these make it possible for your online behaviour to be tracked. You consent to this by clicking on Accept. Also read our Privacy statement
Necessary
Cookies that are essential for the basic functioning of the website. These cookies are used to enable students and staff to log in to the site, for example.
Necessary & Optimalisation
Cookies that collect information about visitor behaviour anonymously to help make the website work more effectively.
Necessary & Optimalisation & Marketing
Cookies that make it possible to track visitors and show them personalised adverts. These are used by third-party advertisers to gather data about online behaviour. To watch Youtube videos you need to enable this category.