Crielaard, L., Uleman, J. F., Châtel, B. DL., Epskamp, S., Sloot, P., & Quax, R. (2024). Refining the causal loop diagram: A tutorial for maximizing the contribution of domain expertise in computational system dynamics modeling. Psychological Methods, 29(1), 169.
Gabel, A., Quax, R., & Gavves, E. (2024). Data-driven Lie point symmetry detection for continuous dynamical systems. Machine Learning: Science and Technology, 5(1), Article 015037. https://doi.org/10.1088/2632-2153/ad2629
Gehlen, J., Li, J., Hourican, C., Tassi, S., Mishra, P. P., Lehtimäki, T., Kähönen, M., Raitakari, O., Bosch, J. A., & Quax, R. (2024). Bias in O-Information Estimation. Entropy, 26(10), Article 837. https://doi.org/10.3390/e26100837
Hourican, C., Li, J., Mishra, P. P., Lehtimäki, T., Mishra, B. H., Kähönen, M., Raitakari, O. T., Laaksonen, R., Keltikangas-Järvinen, L., Juonala, M., & Quax, R. (2024). Efficient Search Algorithms for Identifying Synergistic Associations in High-Dimensional Datasets. Entropy, 26(11), Article 968. https://doi.org/10.3390/e26110968
Koloi, A., Loukas, V. S., Hourican, C., Sakellarios, A. I., Quax, R., Mishra, P. P., Lehtimäki, T., Raitakari, O. T., Papaloukas, C., Bosch, J. A., März, W., & Fotiadis, D. I. (2024). Predicting early-stage coronary artery disease using machine learning and routine clinical biomarkers improved by augmented virtual data. European Heart Journal - Digital Health, 5(5), 542-550. https://doi.org/10.1093/ehjdh/ztae049
Oetker, F., Roelofsen, L. A. S., Belleman, R. G., & Quax, R. (2024). CrimeSeen: An Interactive Visualization Environment for Scenario Testing on Criminal Cocaine Networks. In L. Franco, C. de Mulatier, M. Paszynski, V. V. Krzhizhanovskaya, J. J. Dongarra, & P. M. A. Sloot (Eds.), Computational Science – ICCS 2024: 24th International Conference, Malaga, Spain, July 2–4, 2024 : proceedings (Vol. III, pp. 195-204). (Lecture Notes in Computer Science; Vol. 14834). Springer. https://doi.org/10.1007/978-3-031-63759-9_24
Uleman, J. F., Quax, R., Melis, R. J. F., Hoekstra, A. G., & Olde Rikkert, M. G. M. (2024). The need for systems thinking to advance Alzheimer's disease research. Psychiatry Research, 333, Article 115741. https://doi.org/10.1016/j.psychres.2024.115741[details]
van Elteren, C., Quax, R., & Sloot, P. M. A. (2024). Cascades Towards Noise-Induced Transitions on Networks Revealed Using Information Flows. Entropy, 26(12), 1050. https://doi.org/10.3390/e26121050
2023
Crielaard, L., Quax, R., Sawyer, A. D. M., Vasconcelos, V. V., Nicolaou, M., Stronks, K., & Sloot, P. M. A. (2023). Using network analysis to identify leverage points based on causal loop diagrams leads to false inference. Scientific Reports, 13(1), Article 21046. https://doi.org/10.1038/s41598-023-46531-z[details]
Gabel, A., Klein, V., Valperga, R., Lamb, J. S. W., Webster, K., Quax, R., & Gavves, E. (2023). Learning Lie Group Symmetry Transformations with Neural Networks. Proceedings of Machine Learning Research, 221, 50-59. https://proceedings.mlr.press/v221/gabel23a.html
Hourican, C., Peeters, G., Melis, R. J. F., Wezeman, S. L., Gill, T. M., Olde Rikkert, M. G. M., & Quax, R. (2023). Understanding multimorbidity requires sign-disease networks and higher-order interactions, a perspective. Frontiers in Systems Biology, 3, Article 1155599. https://doi.org/10.3389/fsysb.2023.1155599[details]
Koloi, A., Loukas, V. S., Sakellarios, A., Bosch, J. A., Quax, R., Nowakowska, K., Tachos, N., Kaźmierski, J., Papaloukas, C., & Fotiadis, D. (2023). A comparison study on creating simulated patient data for individuals suffering from chronic coronary disorders. In 2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/EMBC40787.2023.10340194
Rydin, A. O., Milaneschi, Y., Quax, R., Li, J., Bosch, J. A., Schoevers, R. A., Giltay, E. J., Penninx, B. W. J. H., & Lamers, F. (2023). A network analysis of depressive symptoms and metabolomics. Psychological Medicine, 53(15), 7385-7394. Advance online publication. https://doi.org/10.1017/S0033291723001009[details]
Uleman, J. F., Melis, R. J. F., Hoekstra, A. G., Olde Rikkert, M. G. M., Quax, R., & the Australian Imaging, Biomarker and Lifestyle study of Aging and Alzheimer's Disease Neuroimaging Initiative studies (2023). Exploring the potential impact of multi-factor precision interventions in Alzheimer's disease with system dynamics. Journal of Biomedical Informatics, 145, Article 104462. https://doi.org/10.1016/j.jbi.2023.104462[details]
Uleman, J. F., Melis, R. J. F., Ntanasi, E., Scarmeas, N., Hoekstra, A. G., Quax, R., Olde Rikkert, M. G. M., & Alzheimer's Disease Neuroimaging Initiative (2023). Simulating the multicausality of Alzheimer's disease with system dynamics. Alzheimer's and Dementia, 19(6), 2633-2654. https://doi.org/10.1002/alz.12923[details]
Yildirim, V., Sheraton, V. M., Brands, R., Crielaard, L., Quax, R., Riel, N. A. W. V., Stronks, K., Nicolaou, M., & Sloot, P. M. A. (2023). A data-driven computational model for obesity-driven diabetes onset and remission through weight loss. iScience, 26(11), Article 108324. https://doi.org/10.1016/j.isci.2023.108324[details]
Merabet, N., Lucassen, P. J., Crielaard, L., Stronks, K., Quax, R., Sloot, P. M. A., la Fleur, S. E., & Nicolaou, M. (2022). How exposure to chronic stress contributes to the development of type 2 diabetes: a complexity science approach. Frontiers in Neuroendocrinology, 65, Article 100972. https://doi.org/10.1016/j.yfrne.2021.100972[details]
den Nijs, K., Edivaldo, J., Châtel, B. D. L., Uleman, J. F., Olde Rikkert, M., Wertheim, H., & Quax, R. (2022). A Global Sharing Mechanism of Resources: Modeling a Crucial Step in the Fight against Pandemics. International Journal of Environmental Research and Public Health, 19(10), Article 5930. https://doi.org/10.3390/ijerph19105930[details]
van Elteren, C., Quax, R., & Sloot, P. (2022). Dynamic importance of network nodes is poorly predicted by static structural features. Physica A : Statistical Mechanics and its Applications, 593, Article 126889. Advance online publication. https://doi.org/10.1016/j.physa.2022.126889[details]
Bruggeman, J., Sprik, R., & Quax, R. (2021). Spontaneous cooperation for public goods. Journal of Mathematical Sociology, 45(3), 183-191. Advance online publication. https://doi.org/10.1080/0022250X.2020.1756285[details]
Crielaard, L., Nicolaou, M., Sawyer, A., Quax, R., & Stronks, K. (2021). Understanding the impact of exposure to adverse socioeconomic conditions on chronic stress from a complexity science perspective. BMC Medicine, 19, Article 242. https://doi.org/10.1186/s12916-021-02106-1[details]
Dutta, P., Quax, R., Crielaard, L., Badiali, L., & Sloot, P. M. A. (2021). Inferring temporal dynamics from cross-sectional data using Langevin dynamics. Royal Society Open Science, 8(11), Article 211374. https://doi.org/10.1098/rsos.211374[details]
Uleman, J. F., Melis, R. J. F., Quax, R., van der Zee, E. A., Thijssen, D., Dresler, M., van de Rest, O., van der Velpen, I. F., Adams, H. H. H., Schmand, B., de Kok, I. M. C. M., de Bresser, J., Richard, E., Verbeek, M., Hoekstra, A. G., Rouwette, E. A. J. A., & Olde Rikkert, M. G. M. (2021). Mapping the multicausality of Alzheimer’s disease through group model building. GeroScience, 43(2), 829–843. https://doi.org/10.1007/s11357-020-00228-7[details]
Weinans, E., Quax, R., van Nes, E. H., & van de Leemput, I. A. (2021). Evaluating the performance of multivariate indicators of resilience loss. Scientific Reports, 11, Article 9148. https://doi.org/10.1038/s41598-021-87839-y[details]
Burger, J., van der Veen, D. C., Robinaugh, D. J., Quax, R., Riese, H., Schoevers, R. A., & Epskamp, S. (2020). Bridging the gap between complexity science and clinical practice by formalizing idiographic theories: a computational model of functional analysis. BMC Medicine, 18, Article 99. https://doi.org/10.1186/s12916-020-01558-1[details]
Burger-, J., Robinaugh, D. J., Quax, R., Riese, H., Schoevers, R. A., Epskamp, S. & Van Der Veen, D. C. (2020). Additional file 2 of Bridging the gap between complexity science and clinical practice by formalizing idiographic theories: a computational model of functional analysis. Figshare. https://doi.org/10.6084/m9.figshare.12511526.v1
Burger-, J., Robinaugh, D. J., Quax, R., Riese, H., Schoevers, R. A., Epskamp, S. & Van Der Veen, D. C. (2020). Additional file 2 of Bridging the gap between complexity science and clinical practice by formalizing idiographic theories: a computational model of functional analysis. Figshare. https://doi.org/10.6084/m9.figshare.12511526.v1
Crielaard, L., Dutta, P., Quax, R., Nicolaou, M., Merabet, N., Stronks, K., & Sloot, P. M. A. (2020). Social norms and obesity prevalence: From cohort to system dynamics models. Obesity Reviews, 21(9), Article e13044. Advance online publication. https://doi.org/10.1111/obr.13044[details]
Har-Shemesh, O., Quax, R., Lansing, J. S., & Sloot, P. M. A. (2020). Questionnaire data analysis using information geometry. Scientific Reports, 10, Article 8633. https://doi.org/10.1038/s41598-020-63760-8[details]
Lever, J. J., van de Leemput, I. A., Weinans, E., Quax, R., Dakos, V., van Nes, E. H., Bascompte, J., & Scheffer, M. (2020). Foreseeing the future of mutualistic communities beyond collapse. Ecology Letters, 23(1), 2-15. https://doi.org/10.1111/ele.13401[details]
Nannes, B., Quax, R., Ashikaga, H., Hocini, M., Dubois, R., Bernus, O., & Haïssaguerre, M. (2020). Early signs of critical slowing down in heart surface electrograms of ventricular fibrillation victims. In V. V. Krzhizhanovskaya, G. Závodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos, & J. Teixeira (Eds.), Computational Science – ICCS 2020: 20th International Conference, Amsterdam, The Netherlands, June 3–5, 2020 : proceedings (Vol. IV, pp. 334-347). (Lecture Notes in Computer Science; Vol. 12140). Springer. https://doi.org/10.1007/978-3-030-50423-6_25[details]
Presbitero, A., Quax, R., Krzhizhanovskaya, V. V., & Sloot, P. M. A. (2020). Detecting critical transitions in the human innate immune system post-cardiac surgery. In V. V. Krzhizhanovskaya, G. Závodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos, & J. Teixeira (Eds.), Computational Science – ICCS 2020: 20th International Conference, Amsterdam, The Netherlands, June 3–5, 2020 : proceedings (Vol. I, pp. 371-384). (Lecture Notes in Computer Science; Vol. 12137). Springer. https://doi.org/10.1007/978-3-030-50371-0_27[details]
2019
Presbitero, A., Mancini, E., Castiglione, F., Krzhizhanovskaya, V. V., & Quax, R. (2019). Game of neutrophils: modeling the balance between apoptosis and necrosis. BMC Bioinformatics, 20(Supplement 6), Article 475. https://doi.org/10.1186/s12859-019-3044-6[details]
Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M. D., Muñoz-Marí, J., van Nes, E. H., Peters, J., Quax, R., Reichstein, M., Scheffer, M., Schölkopf, B., Spirtes, P., Sugihara, G., Sun, J., ... Zscheischler, J. (2019). Inferring causation from time series in Earth system sciences. Nature Communications, 10, Article 2553. https://doi.org/10.1038/s41467-019-10105-3[details]
Vermeulen, W. R. J., Roy, D., & Quax, R. (2019). Modelling the Influence of Regional Identity on Human Migration. Urban Science, 3(3), Article 78. Advance online publication. https://doi.org/10.3390/urbansci3030078[details]
Weinans, E., Lever, J. J., Bathiany, S., Quax, R., Bascompte, J., van Nes, E. H., Scheffer, M., & van de Leemput, I. A. (2019). Finding the direction of lowest resilience in multivariate complex systems. Journal of the Royal Society Interface, 16(159), Article 20190629. https://doi.org/10.1098/rsif.2019.0629[details]
Mancini, E., Quax, R., De Luca, A., Fidler, S., Stohr, W., & Sloot, P. M. A. (2018). A study on the dynamics of temporary HIV treatment to assess the controversial outcomes of clinical trials: An in-silico approach. PLoS ONE, 13(7), Article e0200892. https://doi.org/10.1371/journal.pone.0200892[details]
Presbitero, A., Mancini, E., Castiglione, F., Krzhizhanovskaya, V. V., & Quax, R. (2018). Evolutionary Game Theory Can Explain the Choice Between Apoptotic and Necrotic Pathways in Neutrophils. In H. J. Zheng, Z. Callejas, D. Griol, H. Wang, X. Hu, H. Schmidt, J. Baumbach, J. Dickerson, & L. Zhang (Eds.), Proceedings 2018 IEEE International Conference on Bioinformatics and Biomedicine : 3-6 Dec. 2018, Madrid, Spain (pp. 1401-1405). IEEE. https://doi.org/10.1109/BIBM.2018.8621127, https://doi.org/10.1109/BIBM.2018.8621127[details]
Quax, R., Chliamovitch, G., Dupuis, A., Falcone, J-L., Chopard, B., Hoekstra, A. G., & Sloot, P. M. A. (2018). Information processing features can detect behavioral regimes of dynamical systems. Complexity, 2018, Article 6047846. https://doi.org/10.1155/2018/6047846[details]
Presbitero, A., Quax, R., Krzhizhanovskaya, V., & Sloot, P. (2017). Anomaly Detection in Clinical Data of Patients Undergoing Heart Surgery. Procedia Computer Science, 108, 99-108. https://doi.org/10.1016/j.procs.2017.05.002[details]
Quax, R., Har-Shemesh, O., & Sloot, P. M. A. (2017). Quantifying Synergistic Information Using Intermediate Stochastic Variables. Entropy, 19(2), Article 85. https://doi.org/10.3390/e19020085[details]
Traag, V. A., Quax, R., & Sloot, P. M. A. (2017). Modelling the distance impedance of protest attendance. Physica A: Statistical Mechanics and its Applications, 468, 171-182. Advance online publication. https://doi.org/10.1016/j.physa.2016.10.054[details]
2016
Har-Shemesh, O., Quax, R., Hoekstra, A. G., & Sloot, P. M. A. (2016). Information geometric analysis of phase transitions in complex patterns: the case of the Gray-Scott reaction-diffusion model. Journal of Statistical Mechanics : Theory and Experiment, 2016(4), Article 043301. https://doi.org/10.1088/1742-5468/2016/04/043301[details]
Tanzil, J. T. I., Lee, J. N., Brown, B. E., Quax, R., Kaandorp, J. A., Lough, J. M., & Todd, P. A. (2016). Luminescence and density banding patterns in massive Porites corals around the Thai-Malay Peninsula, Southeast Asia. Limnology and Oceanography, 61(6), 2003-2026. Advance online publication. https://doi.org/10.1002/lno.10350[details]
2014
Duan, W., Quax, R., Lees, M., Qiu, X., & Sloot, P. M. A. (2014). Topology dependent epidemic spreading velocity in weighted networks. Journal of Statistical Mechanics : Theory and Experiment, 2014(12), Article P12020. https://doi.org/10.1088/1742-5468/2014/12/P12020[details]
Jung, T. I., Vogiatzian, F., Har-Shemesh, O., Fitzsimons, C. P., & Quax, R. (2014). Applying Information Theory to Neuronal Networks: From Theory to Experiments. Entropy, 16(11), 5721-5737. https://doi.org/10.3390/e16115721[details]
Quax, R., Apolloni, A., & Sloot, P. M. A. (2013). The diminishing role of hubs in dynamical processes on complex networks. Journal of the Royal Society Interface, 10(88), 20130568. Article 20130568. Advance online publication. https://doi.org/10.1098/rsif.2013.0568[details]
Quax, R., Apolloni, A., & Sloot, P. M. A. (2013). Towards understanding the behavior of physical systems using information theory. The European Physical Journal - Special Topics, 222(6), 1389-1401. https://doi.org/10.1140/epjst/e2013-01933-9[details]
Quax, R., Kandhai, D., & Sloot, P. M. A. (2013). Information dissipation as an early-warning signal for the Lehman Brothers collapse in financial time series. Scientific Reports, 3, Article 1898. https://doi.org/10.1038/srep01898[details]
Quax, R., van de Vijver, D. A. M. C., Frentz, D., & Sloot, P. M. A. (2013). Inferring epidemiological parameters from phylogenetic information for the HIV-1 epidemic among MSM. The European Physical Journal - Special Topics, 222(6), 1347-1358. https://doi.org/10.1140/epjst/e2013-01930-0[details]
2011
Mei Shan, A., Quax, R., van de Vijver, D., Zhu, Y., & Sloot, P. M. A. (2011). Increasing risk behaviour can outweigh the benefits of antiretroviral drug treatment on the HIV incidence among men-having-sex-with-men in Amsterdam. BMC Infectious Diseases, 11(118). https://doi.org/10.1186/1471-2334-11-118[details]
Quax, R., Bader, D. A., & Sloot, P. M. A. (2011). SEECN: simulating complex systems using dynamic complex networks. International Journal for Multiscale Computational Engineering, 9(2), 201-214. https://doi.org/10.1615/IntJMultCompEng.v9.i2.50[details]
Mei, S., Sloot, P. M. A., Quax, R., Zhu, Y., & Wang, W. (2010). Complex agent networks explaining the HIV epidemic among homosexual men in Amsterdam. Mathematics and Computers in Simulation, 80(5), 1018-1030. https://doi.org/10.1016/j.matcom.2009.12.008[details]
2009
Quax, R., Bader, D. A., & Sloot, P. M. A. (2009). Simulating individual-based models of epidemics in hierarchical networks. In G. Allen, J. Nabrzyski, E. Seidel, G. D. van Albada, J. Dongarra, & P. M. A. Sloot (Eds.), Computational Science – ICCS 2009: 9th International Conference Baton Rouge, LA, USA, May 25-27, 2009 : proceedings (Vol. I, pp. 725-734). (Lecture Notes in Computer Science; Vol. 5544). Springer. https://doi.org/10.1007/978-3-642-01970-8_72[details]
Uleman, J. F., Quax, R., Melis, R. J. F., Hoekstra, A., & Olde Rikkert, M. G. M. (2021). An individualized systems model to optimize Alzheimer’s disease prevention strategies. Alzheimer's & Dementia, 17(S10), Article e050885. https://doi.org/10.1002/alz.050885[details]
2020
Uleman, J., Melis, R. J. F., Hoekstra, A., Quax, R., & Olde Rikkert, M. G. M. (2020). Uncovering the multicausality of Alzheimer’s disease: A systems modeling approach: Epidemiology/Risk and protective factors in MCI and dementia. Alzheimer's & Dementia, 16(S10), Article e041105. https://doi.org/10.1002/alz.041105[details]
2018
Glombek, M., Helmus, J. R., Lees, M., van den Hoed, R., & Quax, R. (2018). Vulnerability Of Charging Infrastructure, A Novel Approach For Improving Charging Station Deployment. In Proceedings of 7th Transport Research Arena TRA 2018: April 16-19, 2018, Vienna, Austria Vienna 2018 TRA. https://doi.org/10.5281/zenodo.1483469[details]
Sloot, P. M. A., & Quax, R. (2012). Information processing as a paradigm to model and simulate complex systems. Journal of Computational Science, 3(5), 247-249. https://doi.org/10.1016/j.jocs.2012.07.001[details]
Crielaard, L. (2023). Adapting to the social environment that we create together: How complexity science changes the way we understand health inequalities. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Chapter 6: Simulations using real-world data can help communicate the complexity of childhood obesity in support of prevention targeting broader societal factors(embargo until 12 June 2025)
Har Shemesh, O. (2017). Phase transitions in complex systems: An information geometric approach. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Burger-, J., Robinaugh, D. J., Quax, R., Riese, H., Schoevers, R. A., Epskamp, S. & Van Der Veen, D. C. (2020). Additional file 2 of Bridging the gap between complexity science and clinical practice by formalizing idiographic theories: a computational model of functional analysis. Figshare. https://doi.org/10.6084/m9.figshare.12511526.v1
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.