Hourican, C., Peeters, G., Melis, R. J. F., Wezeman, S. L., Gill, T. M., Olde Rikkert, M. G. M., & Quax, R. (2023). Understanding multimorbidity requires sign-disease networks and higher-order interactions, a perspective. Frontiers in Systems Biology, 3, [1155599]. https://doi.org/10.3389/fsysb.2023.1155599[details]
Rydin, A. O., Milaneschi, Y., Quax, R., Li, J., Bosch, J. A., Schoevers, R. A., Giltay, E. J., Penninx, B. WJH., & Lamers, F. (2023). A network analysis of depressive symptoms and metabolomics. Psychological Medicine, 1-10. https://doi.org/10.1017/S0033291723001009
Uleman, J. F., Melis, R. J. F., Ntanasi, E., Scarmeas, N., Hoekstra, A. G., Quax, R., Olde Rikkert, M. G. M., & Alzheimer's Disease Neuroimaging Initiative (2023). Simulating the multicausality of Alzheimer's disease with system dynamics. Alzheimer's and Dementia, 19(6), 2633-2654. https://doi.org/10.1002/alz.12923[details]
Crielaard, L., Uleman, J. F., Châtel, B. D. L., Epskamp, S., Sloot, P. M. A., & Quax, R. (2022). Refining the causal loop diagram: A tutorial for maximizing the contribution of domain expertise in computational system dynamics modeling. Psychological Methods. https://doi.org/10.1037/met0000484
Merabet, N., Lucassen, P. J., Crielaard, L., Stronks, K., Quax, R., Sloot, P. M. A., la Fleur, S. E., & Nicolaou, M. (2022). How exposure to chronic stress contributes to the development of type 2 diabetes: a complexity science approach. Frontiers in Neuroendocrinology, 65, [100972]. https://doi.org/10.1016/j.yfrne.2021.100972[details]
den Nijs, K., Edivaldo, J., Châtel, B. D. L., Uleman, J. F., Olde Rikkert, M., Wertheim, H., & Quax, R. (2022). A Global Sharing Mechanism of Resources: Modeling a Crucial Step in the Fight against Pandemics. International Journal of Environmental Research and Public Health, 19(10), [5930]. https://doi.org/10.3390/ijerph19105930[details]
van Elteren, C., Quax, R., & Sloot, P. (2022). Dynamic importance of network nodes is poorly predicted by static structural features. Physica A : Statistical Mechanics and its Applications, 593, [126889]. https://doi.org/10.1016/j.physa.2022.126889[details]
Crielaard, L., Nicolaou, M., Sawyer, A., Quax, R., & Stronks, K. (2021). Understanding the impact of exposure to adverse socioeconomic conditions on chronic stress from a complexity science perspective. BMC Medicine, 19, [242]. https://doi.org/10.1186/s12916-021-02106-1[details]
Dutta, P., Quax, R., Crielaard, L., Badiali, L., & Sloot, P. M. A. (2021). Inferring temporal dynamics from cross-sectional data using Langevin dynamics. Royal Society Open Science, 8(11), [211374]. https://doi.org/10.1098/rsos.211374[details]
Uleman, J. F., Melis, R. J. F., Quax, R., van der Zee, E. A., Thijssen, D., Dresler, M., van de Rest, O., van der Velpen, I. F., Adams, H. H. H., Schmand, B., de Kok, I. M. C. M., de Bresser, J., Richard, E., Verbeek, M., Hoekstra, A. G., Rouwette, E. A. J. A., & Olde Rikkert, M. G. M. (2021). Mapping the multicausality of Alzheimer’s disease through group model building. GeroScience, 43(2), 829–843. https://doi.org/10.1007/s11357-020-00228-7[details]
Uleman, J. F., Quax, R., Melis, R. JF., Hoekstra, A., & Rikkert, M. GM. O. (2021). An individualized systems model to optimize Alzheimer’s disease prevention strategies. Alzheimer's & Dementia, 17(S10), [e050885]. https://doi.org/10.1002/alz.050885
Weinans, E., Quax, R., van Nes, E. H., & van de Leemput, I. A. (2021). Evaluating the performance of multivariate indicators of resilience loss. Scientific Reports, 11, [9148]. https://doi.org/10.1038/s41598-021-87839-y[details]
Burger, J., van der Veen, D. C., Robinaugh, D. J., Quax, R., Riese, H., Schoevers, R. A., & Epskamp, S. (2020). Bridging the gap between complexity science and clinical practice by formalizing idiographic theories: a computational model of functional analysis. BMC Medicine, 18, [99]. https://doi.org/10.1186/s12916-020-01558-1[details]
Crielaard, L., Dutta, P., Quax, R., Nicolaou, M., Merabet, N., Stronks, K., & Sloot, P. M. A. (2020). Social norms and obesity prevalence: From cohort to system dynamics models. Obesity Reviews, 21(9), [e13044]. https://doi.org/10.1111/obr.13044[details]
Har-Shemesh, O., Quax, R., Lansing, J. S., & Sloot, P. M. A. (2020). Questionnaire data analysis using information geometry. Scientific Reports, 10, [8633]. https://doi.org/10.1038/s41598-020-63760-8[details]
Lever, J. J., van de Leemput, I. A., Weinans, E., Quax, R., Dakos, V., van Nes, E. H., Bascompte, J., & Scheffer, M. (2020). Foreseeing the future of mutualistic communities beyond collapse. Ecology Letters, 23(1), 2-15. https://doi.org/10.1111/ele.13401[details]
Nannes, B., Quax, R., Ashikaga, H., Hocini, M., Dubois, R., Bernus, O., & Haïssaguerre, M. (2020). Early signs of critical slowing down in heart surface electrograms of ventricular fibrillation victims. In V. V. Krzhizhanovskaya, G. Závodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos, & J. Teixeira (Eds.), Computational Science – ICCS 2020: 20th International Conference, Amsterdam, The Netherlands, June 3–5, 2020 : proceedings (Vol. IV, pp. 334-347). (Lecture Notes in Computer Science; Vol. 12140). Springer. https://doi.org/10.1007/978-3-030-50423-6_25[details]
Presbitero, A., Quax, R., Krzhizhanovskaya, V. V., & Sloot, P. M. A. (2020). Detecting critical transitions in the human innate immune system post-cardiac surgery. In V. V. Krzhizhanovskaya, G. Závodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos, & J. Teixeira (Eds.), Computational Science – ICCS 2020: 20th International Conference, Amsterdam, The Netherlands, June 3–5, 2020 : proceedings (Vol. I, pp. 371-384). (Lecture Notes in Computer Science; Vol. 12137). Springer. https://doi.org/10.1007/978-3-030-50371-0_27[details]
2019
Presbitero, A., Mancini, E., Castiglione, F., Krzhizhanovskaya, V. V., & Quax, R. (2019). Game of neutrophils: modeling the balance between apoptosis and necrosis. BMC Bioinformatics, 20(Supplement 6), [475]. https://doi.org/10.1186/s12859-019-3044-6[details]
Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., ... Zscheischler, J. (2019). Inferring causation from time series in Earth system sciences. Nature Communications, 10, [2553]. https://doi.org/10.1038/s41467-019-10105-3[details]
Weinans, E., Lever, J. J., Bathiany, S., Quax, R., Bascompte, J., van Nes, E. H., Scheffer, M., & van de Leemput, I. A. (2019). Finding the direction of lowest resilience in multivariate complex systems. Journal of the Royal Society Interface, 16(159), [20190629]. https://doi.org/10.1098/rsif.2019.0629[details]
Mancini, E., Quax, R., De Luca, A., Fidler, S., Stohr, W., & Sloot, P. M. A. (2018). A study on the dynamics of temporary HIV treatment to assess the controversial outcomes of clinical trials: An in-silico approach. PLoS ONE, 13(7), [e0200892]. https://doi.org/10.1371/journal.pone.0200892[details]
Presbitero, A., Mancini, E., Castiglione, F., Krzhizhanovskaya, V. V., & Quax, R. (2018). Evolutionary Game Theory Can Explain the Choice Between Apoptotic and Necrotic Pathways in Neutrophils. In H. J. Zheng, Z. Callejas, D. Griol, H. Wang, X. Hu, H. Schmidt, J. Baumbach, J. Dickerson, ... L. Zhang (Eds.), Proceedings 2018 IEEE International Conference on Bioinformatics and Biomedicine : 3-6 Dec. 2018, Madrid, Spain (pp. 1401-1405). Piscataway, NJ: IEEE. https://doi.org/10.1109/BIBM.2018.8621127, https://doi.org/10.1109/BIBM.2018.8621127[details]
Quax, R., Chliamovitch, G., Dupuis, A., Falcone, J-L., Chopard, B., Hoekstra, A. G., & Sloot, P. M. A. (2018). Information processing features can detect behavioral regimes of dynamical systems. Complexity, 2018, [6047846]. https://doi.org/10.1155/2018/6047846[details]
Presbitero, A., Quax, R., Krzhizhanovskaya, V., & Sloot, P. (2017). Anomaly Detection in Clinical Data of Patients Undergoing Heart Surgery. Procedia Computer Science, 108, 99-108. https://doi.org/10.1016/j.procs.2017.05.002[details]
Quax, R., Har-Shemesh, O., & Sloot, P. M. A. (2017). Quantifying Synergistic Information Using Intermediate Stochastic Variables. Entropy, 19(2), [85]. https://doi.org/10.3390/e19020085[details]
Traag, V. A., Quax, R., & Sloot, P. M. A. (2017). Modelling the distance impedance of protest attendance. Physica A: Statistical Mechanics and its Applications, 468, 171-182. https://doi.org/10.1016/j.physa.2016.10.054[details]
2016
Har-Shemesh, O., Quax, R., Hoekstra, A. G., & Sloot, P. M. A. (2016). Information geometric analysis of phase transitions in complex patterns: the case of the Gray-Scott reaction-diffusion model. Journal of Statistical Mechanics : Theory and Experiment, 2016(4), [043301]. https://doi.org/10.1088/1742-5468/2016/04/043301[details]
Tanzil, J. T. I., Lee, J. N., Brown, B. E., Quax, R., Kaandorp, J. A., Lough, J. M., & Todd, P. A. (2016). Luminescence and density banding patterns in massive Porites corals around the Thai-Malay Peninsula, Southeast Asia. Limnology and Oceanography, 61(6), 2003-2026. https://doi.org/10.1002/lno.10350[details]
2014
Duan, W., Quax, R., Lees, M., Qiu, X., & Sloot, P. M. A. (2014). Topology dependent epidemic spreading velocity in weighted networks. Journal of Statistical Mechanics : Theory and Experiment, 2014(12), [P12020]. https://doi.org/10.1088/1742-5468/2014/12/P12020[details]
Jung, T. I., Vogiatzian, F., Har-Shemesh, O., Fitzsimons, C. P., & Quax, R. (2014). Applying Information Theory to Neuronal Networks: From Theory to Experiments. Entropy, 16(11), 5721-5737. https://doi.org/10.3390/e16115721[details]
Quax, R., Apolloni, A., & Sloot, P. M. A. (2013). The diminishing role of hubs in dynamical processes on complex networks. Journal of the Royal Society Interface, 10(88), 20130568. [20130568]. https://doi.org/10.1098/rsif.2013.0568[details]
Quax, R., Apolloni, A., & Sloot, P. M. A. (2013). Towards understanding the behavior of physical systems using information theory. The European Physical Journal - Special Topics, 222(6), 1389-1401. https://doi.org/10.1140/epjst/e2013-01933-9[details]
Quax, R., Kandhai, D., & Sloot, P. M. A. (2013). Information dissipation as an early-warning signal for the Lehman Brothers collapse in financial time series. Scientific Reports, 3, [1898]. https://doi.org/10.1038/srep01898[details]
Quax, R., van de Vijver, D. A. M. C., Frentz, D., & Sloot, P. M. A. (2013). Inferring epidemiological parameters from phylogenetic information for the HIV-1 epidemic among MSM. The European Physical Journal - Special Topics, 222(6), 1347-1358. https://doi.org/10.1140/epjst/e2013-01930-0[details]
2011
Mei Shan, A., Quax, R., van de Vijver, D., Zhu, Y., & Sloot, P. M. A. (2011). Increasing risk behaviour can outweigh the benefits of antiretroviral drug treatment on the HIV incidence among men-having-sex-with-men in Amsterdam. BMC Infectious Diseases, 11(118). https://doi.org/10.1186/1471-2334-11-118[details]
Quax, R., Bader, D. A., & Sloot, P. M. A. (2011). SEECN: simulating complex systems using dynamic complex networks. International Journal for Multiscale Computational Engineering, 9(2), 201-214. https://doi.org/10.1615/IntJMultCompEng.v9.i2.50[details]
Mei, S., Sloot, P. M. A., Quax, R., Zhu, Y., & Wang, W. (2010). Complex agent networks explaining the HIV epidemic among homosexual men in Amsterdam. Mathematics and Computers in Simulation, 80(5), 1018-1030. https://doi.org/10.1016/j.matcom.2009.12.008[details]
2009
Quax, R., Bader, D. A., & Sloot, P. M. A. (2009). Simulating individual-based models of epidemics in hierarchical networks. In G. Allen, J. Nabrzyski, E. Seidel, G. D. van Albada, J. Dongarra, & P. M. A. Sloot (Eds.), Computational Science – ICCS 2009: 9th International Conference Baton Rouge, LA, USA, May 25-27, 2009 : proceedings (Vol. I, pp. 725-734). (Lecture Notes in Computer Science; Vol. 5544). Springer. https://doi.org/10.1007/978-3-642-01970-8_72[details]
2022
Lang, L., Baudot, P., Quax, R., & Forré, P. D. (2022). Information Decomposition Diagrams Applied beyond Shannon Entropy: A Generalization of Hu's Theorem. https://arxiv.org/abs/2202.09393
2020
Uleman, J., Melis, R. J. F., Hoekstra, A., Quax, R., & Olde Rikkert, M. G. M. (2020). Uncovering the multicausality of Alzheimer’s disease: A systems modeling approach: Epidemiology/Risk and protective factors in MCI and dementia. Alzheimer's & Dementia, 16(S10), [e041105]. https://doi.org/10.1002/alz.041105[details]
2018
Glombek, M., Helmus, J. R., Lees, M., van den Hoed, R., & Quax, R. (2018). Vulnerability Of Charging Infrastructure, A Novel Approach For Improving Charging Station Deployment. In Proceedings of 7th Transport Research Arena TRA 2018: April 16-19, 2018, Vienna, Austria Vienna: Vienna 2018 TRA. https://doi.org/10.5281/zenodo.1483469[details]
Sloot, P. M. A., & Quax, R. (2012). Information processing as a paradigm to model and simulate complex systems. Journal of Computational Science, 3(5), 247-249. https://doi.org/10.1016/j.jocs.2012.07.001[details]
2023
Châtel, B. D. L., Quax, R., & Vasconcelos, V. V. (Accepted/In press). Alone in the crowd: a computational social network model uncovering the clustering mechanisms of loneliness. Abstract from Complenet 2023, Aveiro, Portugal.
Crielaard, L. (2023). Adapting to the social environment that we create together: How complexity science changes the way we understand health inequalities. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Chapter 6: Simulations using real-world data can help communicate the complexity of childhood obesity in support of prevention targeting broader societal factors(embargo until 12 June 2025)
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteer alle cookies’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Lees ook het UvA Privacy statement.